Abstract:
Provided is a process for isolating a catalyst from a solution having a copolymer and a catalyst dissolved therein, after performing copolymerization with the catalyst. More specifically the invention provides selection and application of an adsorbent to be used for the isolation.
Abstract:
Provided is a display device including: a flexible substrate; a display unit disposed on the substrate; and a driver integrated circuit (IC) to drive the display unit. The driver IC is divided into separate blocks that are disposed on opposing sides of a bending axis of the substrate.
Abstract:
The present invention relates to a zinc ferrite catalyst, a method of producing the same, and a method of preparing 1,3-butadiene using the same. Specifically, the present invention relates to a zinc ferrite catalyst which is produced in a pH-adjusted solution using a coprecipitation method, a method of producing the same, and a method of preparing 1,3-butadiene using the same, in which the 1,3-butadiene can be prepared directly using a C4 mixture including n-butene and n-butane through an oxidative dehydrogenation reaction. The present invention is advantageous in that 1,3-butadiene can be obtained at a high yield directly using a C4 fraction without performing an additional process for separating n-butene, as a reactant, from a C4 fraction containing impurities.
Abstract:
Embodiments provide a light sensor circuit for a flat panel display which improves resolution at low luminance and increases the range of sensible ambient light by divisionally driving a frame period, in which light is sensed, into a plurality of sub-frames, and a method of driving the light sensor circuit.
Abstract:
This invention relates to a method of preparing a mixed manganese ferrite coated catalyst, and a method of preparing 1,3-butadiene using the same, and more particularly, to a method of preparing a catalyst by coating a support with mixed manganese ferrite obtained by co-precipitation at 10˜40° C. using a binder and to a method of preparing 1,3-butadiene using oxidative dehydrogenation of a crude C4 mixture containing n-butene and n-butane in the presence of the prepared catalyst. This mixed manganese ferrite coated catalyst has a simple synthetic process, and facilitates control of the generation of heat upon oxidative dehydrogenation and is very highly active in the dehydrogenation of n-butene.
Abstract:
An organic light emitting diode display that includes a pixel unit including a plurality of scanning lines, a plurality of data lines, a plurality of first control lines, a plurality of second control lines, a first power source, a second power source and a third power source, a pixel unit including a plurality of pixels connected to the scanning lines, the data lines, the first control lines, the second control lines, the first power source, the second power source, and the third power source, a control line driving unit configured to provide each of said pixels with a first control signal and a second control signal through the first control lines and the second control lines respectively, a scan driving unit configured to provide each of said pixels with scanning signals through the scanning lines and a data driving unit configured to provide each of said pixels with data signals.
Abstract:
The present invention relates to a bifunctional catalyst for a hydrodewaxing process with improved isomerization selectivity, and to a method for manufacturing the same, and more particularly to a bifunctional catalyst and to a method for manufacturing same, which is characterized in that EU-2 zeolite with a controlled degree of phase transformation is used as a catalyst support having an acid site. The EU-2 zeolite, the degree of phase transformation of which is controlled, includes, by controlling synthesis parameters of EU-2, predetermined amounts of materials that are phase-transformed from EU-2 crystals such as cristobalite and quartz. The metal loaded bifunctional catalyst according to the present invention improves selectivity of the isomerization process, rather than a cracking reaction, during a hydroisomerization reaction of n-hexadecane. Therefore, the bifunctional catalyst can be widely used as a catalyst for a dewaxing process such as lubricant base oil and diesel oil.
Abstract:
A light emitting device package of the embodiment includes a body including cavities; first and second lead electrodes disposed in the cavity of the body; a light emitting device disposed in the cavities, electrically connected to at least one of the first and second lead electrodes and emitting a first main peak wavelength in the range of 410˜460 nm; and a first resin layer having first phosphor on the light emitting device, wherein the first phosphor of the first resin layer emits light of a second main peak wavelength in the range of 461 nm˜480 nm by exciting some light having the first main peak wavelength, and the first and second main peak wavelengths have the wavelength different from each other and contain the light having the same color.
Abstract:
Disclosed is a catalytic cracking process for the production of light olefins from a hydrocarbon feedstock using fast fluidization, which is a preferred process for more efficiently increasing the production of light olefin hydrocarbons. According to this invention, a fast fluidization regime is applied to a fluidized bed catalytic cracking process of producing light olefins using zeolite, such that a volume fraction and distribution of the catalyst sufficient to induce the catalytic cracking reaction can be provided, thus effectively enhancing the production of light olefin hydrocarbons, in particular, ethylene and propylene, at high selectivity.
Abstract:
A method of producing 1,3-butadiene by the oxidative dehydrogenation of n-butene using a continuous-flow dual-bed reactor designed such that two kinds of catalysts charged in a fixed-bed reactor are not physically mixed. More particularly, a method of producing 1,3-butadiene by the oxidative dehydrogenation of n-butene using a C4 mixture including n-butene and n-butane as reactants and using a continuous-flow dual-bed reactor in which a multi-component bismuth molybdate catalyst and a zinc ferrite catalyst having different reaction activity in the oxidative dehydrogenation reaction of n-butene isomers (1-butene, trans-2-butene, cis-2-butene).