摘要:
An SiC semiconductor device has a p type region including a low concentration region and a high concentration region filled in a trench formed in a cell region. A p type column is provided by the low concentration region, and a p+ type deep layer is provided by the high concentration region. Thus, since a SJ structure can be made by the p type column and the n type column provided by the n type drift layer, an on-state resistance can be reduced. As a drain potential can be blocked by the p+ type deep layer, at turnoff, an electric field applied to the gate insulation film can be alleviated and thus breakage of the gate insulation film can be restricted. Therefore, the SiC semiconductor device can realize the reduction of the on-state resistance and the restriction of breakage of the gate insulation film.
摘要:
A semiconductor device has a stacked structure in which a p-GaN layer, an SI-GaN layer, and an AlGaN layer are stacked, and has a gate electrode that is formed at a top surface side of the AlGaN layer. A band gap of the AlGaN layer is wider than a band gap of the p-GaN layer and the SI-GaN layer. Moreover, impurity concentration of the SI-GaN layer is less than 1×1017 cm−3. Semiconductor devices including III-V semiconductors may have a stable normally-off operation.
摘要:
An SiC semiconductor device has a p type region including a low concentration region and a high concentration region filled in a trench formed in a cell region. A p type column is provided by the low concentration region, and a p+ type deep layer is provided by the high concentration region. Thus, since a SJ structure can be made by the p type column and the n type column provided by the n type drift layer, an on-state resistance can be reduced. As a drain potential can be blocked by the p+ type deep layer, at turnoff, an electric field applied to the gate insulation film can be alleviated and thus breakage of the gate insulation film can be restricted. Therefore, the SiC semiconductor device can realize the reduction of the on-state resistance and the restriction of breakage of the gate insulation film.
摘要:
An apparatus includes a supply unit having a humidifying portion that supplies humidified gas near a nozzle array of a line-type recording head. In correspondence to displacement of the recording head in a direction of the nozzle array, at least one of an introducing direction and an introducing position of the supplied humidified gas can be changed.
摘要:
A manufacturing method of a silicon carbide semiconductor device includes: forming a drift layer on a silicon carbide substrate; forming a base layer on or in a surface portion of the drift layer; forming a source region in a surface portion of the base layer; forming a trench to penetrate the base layer and to reach the drift layer; forming a gate electrode on a gate insulation film in the trench; forming a source electrode electrically connected to the source region and the base layer; and forming a drain electrode on a back surface of the substrate. The forming of the trench includes: flattening a substrate surface; and etching to form the trench after flattening.
摘要:
A semiconductor device 10 is provided with a first hetero junction 40b configured with two types of nitride semiconductors having different bandgap energy from each other, a second hetero junction 50b configured with two types of nitride semiconductors having different bandgap energy from each other, and a gate electrode 58 facing the second hetero junction 50b. The second hetero junction 50b is configured to be electrically connected to the first hetero junction 40b. The first hetero junction 40b is a c-plane and the second hetero junction 50b is either an a-plane or an m-plane.
摘要:
A silicon carbide semiconductor device includes a silicon carbide semiconductor substrate and a trench. The silicon carbide semiconductor substrate has an offset angle with respect to a (0001) plane or a (000-1) plane and has an offset direction in a direction. The trench is provided from a surface of the silicon carbide semiconductor substrate. The trench extends in a direction whose interior angle with respect to the offset direction is 30 degrees or −30 degrees.
摘要:
Provided are a vertical nitride semiconductor device in which occurrence of leak currents can be suppressed, and a method for manufacturing such nitride semiconductor device. A nitride semiconductor device, which is a vertical HEMT, is provided with an n− type GaN first nitride semiconductor layer, p+ type GaN second nitride semiconductor layers, an n− type GaN third nitride semiconductor layer, and an n− type AlGaN fourth nitride semiconductor layer that is in hetero junction with a front surface of the third nitride semiconductor layer. Openings that penetrate the third nitride semiconductor layer and reach front surfaces of the second nitride semiconductor layers are provided at positions isolated from the peripheral edge of the third nitride semiconductor layer. Source electrodes are provided in the openings. Etching damage that is in contact with the source electrodes is surrounded by a region where no etching damage is formed.
摘要:
A semiconductor device includes a semiconductor substrate and an electric field terminal part. The semiconductor substrate includes a substrate, a drift layer disposed on a surface of the substrate, and a base layer disposed on a surface of the drift layer. The semiconductor substrate is divided into a cell region in which a semiconductor element is disposed and a peripheral region that surrounds the cell region. The base region has a bottom face located on a same plane throughout the cell region and the peripheral region and provides an electric field relaxing layer located in the peripheral region. The electric field terminal part surrounds the cell region and a portion of the electric field relaxing layer and penetrates the electric field relaxing layer from a surface of the electric field relaxing layer to the drift layer.
摘要:
Provided is a printing apparatus in which bubbles in a print head are easily removed. The printing apparatus includes a first one-way valve disposed between the pump and the ink tank in the collection channel, the first one-way valve allowing movement of ink from the pump to the ink tank and blocking movement of ink from the ink tank to the pump; a circulation channel that connects the ink tank to the collection channel at a position between the pump and the first one-way valve, the circulation channel enabling circulation of ink from the ink tank, through the print head, and to the ink tank; and a second one-way valve disposed in the circulation channel, the second one-way valve allowing movement of ink from the ink tank to the pump and blocking movement of ink from the pump to the ink tank.