Abstract:
The disclosed technology generally relates to characterization of semiconductor structures, and more particularly to optical characterization of high-k dielectric materials. A method includes providing a semiconductor structure comprising a semiconductor and a high-k dielectric layer formed over the semiconductor, wherein the dielectric layer has electron traps formed therein. The method additionally includes at least partially transmitting an incident light having an incident energy through the high-k dielectric layer and at least partially absorbing the incident light in the semiconductor. The method additionally includes measuring a nonlinear optical spectrum resulting from the light having the energy different from the incident energy, the nonlinear optical spectrum having a first region and a second region, wherein the first region changes at a different rate in intensity compared to the second region. The method further includes determining from the nonlinear optical spectrum one or both of a first time constant from the first region and a second time constant from the second region, and determining a trap density in the high-k dielectric layer based on the one or both of the first time constant and the second time constant.
Abstract:
Systems and methods in accordance with various embodiments of the invention implement mirrors that are more transparent to specific regions of the electromagnetic spectrum (e.g. the microwave region of the electromagnetic spectrum) relative to conventional metallic mirrors (e.g. mirrors made form aluminum or silver). In one embodiment, a space-based solar power system includes: a photovoltaic material; and a mirror that is—relative to a 10 μm thick sheet of aluminum—more transparent to at least one of a substantial portion of the microwave region of the electromagnetic spectrum and a substantial portion of the radio wave region of the electromagnetic spectrum; where the mirror is configured to focus incident visible light onto the photovoltaic material.
Abstract:
A space-based solar power station, a power generating satellite module and/or a method for collecting solar radiation and transmitting power generated using electrical current produced therefrom is provided. Each solar power station includes a plurality of satellite modules. The plurality of satellite modules each include a plurality of modular power generation tiles including a photovoltaic solar radiation collector, a power transmitter and associated control electronics. The power transmitters can be coordinated as a phased array and the power generated by the phased array is transmitted to one or more power receivers to achieve remote wireless power generation and delivery. Each satellite module may be formed of a compactable structure capable of reducing the payload area required to deliver the satellite module to an orbital formation within the space-based solar power station.
Abstract:
The present invention provides strategies for improving the quality of the insulating layer in MIS and SIS devices in which the insulator layer interfaces with at least one pnictide-containing film The principles of the present invention are based at least in part on the discovery that very thin (20 nm or less) insulating films comprising a chalcogenide such as i-ZnS are surprisingly superior tunnel barriers in MIS and SIS devices incorporating pnictide semiconductors. In one aspect, the present invention relates to a photovoltaic device, comprising: a semiconductor region comprising at least one pnictide semiconductor; an insulating region electrically coupled to the semiconductor region, wherein the insulating region comprises at least one chalcogenide and has a thickness in the range from 0.5 nm to 20 nm; and a rectifying region electrically coupled to the semiconductor region in a manner such that the insulating region is electrically interposed between the collector region and the semiconductor region.
Abstract:
The present invention provides photovoltaic devices that comprise multiple bandgap cell arrays in combination with spectrum splitting optics. The spectrum splitting optics include one or more optical spectrum splitting modules that include two or more optical splitting, diffractive elements that are optically in series to successively and diffractively split incident light into segments or slices that are independently directed onto different photovoltaic cell(s) of the array having appropriate bandgap characteristics.
Abstract:
The present invention provides methods of making photovoltaic devices incorporating improved pnictide semiconductor films. In particular, the principles of the present invention are used to improve the surface quality of pnictide films. Photovoltaic devices incorporating these films demonstrate improved electronic performance. As an overview, the present invention involves a methodology that metalizes the pnictide film, anneals the metalized film under conditions that tend to form an alloy between the pnictide film and the alloy, and then removes the excess metal and at least a portion of the alloy. In one mode of practice, the pnictide semiconductor is Zinc phosphide and the metal is Magnesium.