Abstract:
A transmitting system includes a clock system and a data system. The clock system is configured to receive a clock having a first value and produce a control signal having a second, different value and an output clock having the first value. The data system is configured to receive data and the control signal and to align the data with the output clock, based on the control signal, to produce output data. The clock system includes a driver configured to produce the output clock, a divider configured to divide the received clock, and a phase interpolator configured to rotate the divided clock to produce the control signal. Also, the data is parallel data, and the data system includes a multiplexer configured to receive the parallel data and to use the control signal to serialize the parallel data as the aligned data and a driver configured to produce the output data.
Abstract:
According to one general aspect, a distributed threshold adjuster (DTA) may be interspersed between stages of a multistage amplifier to adjust the DC voltage of an input signal. The DTA may include an input signal terminal configured to receive the input signal. The DTA may also include a plurality of current sources configured to produce an adjustment current signal whose amperage is configured to be increased or decreased by fixed steps in order to adjust the DC voltage of the input signal. The DTA may include a control unit configured to selectively turn on or off the individual current sources of the plurality of current sources to select the amperage of the adjustment current signal. The DTA may further include an output terminal configured to produce an output signal, comprising a combination of the input signal and the adjustment current signal, to a stage of a multistage amplifier.
Abstract:
An apparatus is disclosed for converting signals from one digital integrated circuit family to be compatible with another digital integrated circuit family. The apparatus includes a primary interface and a secondary interface to convert a differential output signal from one digital integrated circuit family for use as an input signal by another digital integrated circuit family. The primary and secondary interfaces include gain stages that are configurable to provide rail to rail voltage swings and are characterized as having single pole architectures. The secondary interface may be unterminated such that a substantially equal load is presented to both components of the differential output signal.
Abstract:
There is presented a high bandwidth circuit for high-speed transceivers. The circuit may comprise an amplifier combining capacitor splitting, inductance tree structures, and various bandwidth extension techniques such as shunt peaking, series peaking, and T-coil peaking to support data rates of 45 Gbs/s and above while reducing data jitter. The inductance elements of the inductance tree structures may also comprise high impedance transmission lines, simplifying implementation. Additionally, the readily identifiable metal structures of inductors and t-coils, the equal partitioning of the load capacitors, and the symmetrical inductance tree structures may simplify transceiver implementation for, but not limited to, a clock data recovery circuit.
Abstract:
Embodiments provide a reference-less frequency detector that overcomes the “dead zone” problem of conventional circuits. In particular, the frequency detector is able to accurately resolve the polarity of the frequency difference between the VCO clock signal and the data signal, irrespective of the magnitude of the frequency difference and the presence of VCO clock jitter and/or ISI on the data signal.
Abstract:
A voltage controlled oscillator (VCO) may include a stack of a plurality of non-connected inductors that are magnetically and/or electrically through capacitor (AC) coupled to each other and not directly physically connected to each other. The plurality of inductors includes a first inductor connected to a supply voltage and a second inductor connected to a VCO control voltage. The VCO may include a first varactor having a gate coupled to a first terminal of the second inductor to receive the VCO control voltage, a second varactor having a gate coupled to a second terminal of the second inductor to receive the VCO control voltage, and an oscillator sub-circuit coupled to first and second terminals of the first inductor. In one example implementation, the second inductor may contribute to the overall inductance of the inductor stack and provide AC decoupling and/or DC coupling between the VCO control voltage and the varactor(s).
Abstract:
Embodiments of a summer block for a Decision Feedback Equalizer are provided herein. The summer block is configured to offset a combination of a Feed Forward Equalized (FFE) data signal and a Feedback Equalized (FBE) data signal by a dc amount. The dc amount is based on at least a weight of a tap previously implemented with an FBE of the DFE. The summer block can be further configured to offset the combination of the FFE data signal and the FBE data signal based on a dc offset value necessary to compensate for asymmetries in the data eye of data received by the FFE over a channel and a dc offset value necessary to compensate for mismatches present in the circuits of the DFE.
Abstract:
A search engine selects initial coefficients for a receive equalizer. The search engine may be incorporated into a communication receiver that includes a decision feedback equalizer and clock and data recovery circuit. Here, the search engine may initialize various adaptation loops that may control the operation of, for example, a decision feedback equalizer, a clock and data recovery circuit and a continuous time filter. The receiver may include an analog-to-digital converter that is used to generate soft decision data for some of the adaptation loops.
Abstract:
Low power high-speed output driver. An array of switches (some of which are inverting switches whose connectivity is governed oppositely as the control signal provided to it) is implemented such that an input signal governs the connectivity of those switches. A resistor is coupled between the nodes interposed between the switches of the array, and an output signal is taken from the nodes at ends of the resistor. The high voltage level of such an output driver is truly the level of the power supply energizing the circuit (e.g., VDD) while still consuming relatively low power.
Abstract:
A gating logic receives a non-return-to-zero (NRZ) input signal and couples the NRZ input signal as an NRZ output signal when operating in a NRZ mode of operation and converts the NRZ input signal to a return-to-zero (RZ) output signal when operating in a RZ mode of operation. A circuit coupled to the gating logic receives a clock signal and couples the clock signal to the gating logic to convert the NRZ input signal to the RZ output signal in the RZ mode of operation. In the NRZ mode of operation, the circuit decouples the clock signal and places a predetermined signal state at the gating logic to pass through the NRZ input signal as the NRZ output signal. The circuit receives a select signal to select between the NRZ and RZ modes of operation and the NRZ and RZ modes are obtained by controlling the clock signal to the gating logic.