Abstract:
A load-carrying active material assembly and a method of preparing such an active material assembly suitable for attachment to a movable component of a mechanism is described. The assembly includes a shape memory alloy (SMA) element, a connector adapted to engage the moveable component mechanically crimped to the SMA element, and a filler material disposed intermediate the connector and SMA element. The filler may be a solder or a polymer. Methods for appropriately distributing the filler material and for promoting good adhesion of the filler to the SMA element and the connector are described.
Abstract:
A method of joining wire includes preparing a first discrete region of a first wire at a first end of the first wire. The prepared first discrete region is welded to a component to form a joint such that material of the prepared first discrete region at least partially thickens the joint. The component is one of a second end of the first wire, an end of a second wire, or a non-wire component. The joint may be heat treated according to a three-stage heat treatment process. Mechanical stress may be induced in the joint during the heat treatment so that the joint is subjected to thermo-mechanical processing.
Abstract:
A curved sandwich impact structure for a vehicle having a micro-truss core. In one embodiment, the sandwich impact structure includes a micro-truss layer sandwiched between two facesheets, a micro-truss layer designed for energy absorption on the outside of one of the facesheets, and a fascia panel in contact with the energy absorbing micro-truss layer.
Abstract:
A method for fabricating a micro-truss structure having particular application for a vehicle impact structure. The method includes providing a thin support enclosure having a plurality of walls, where at least one of the walls is transparent to ultraviolet (UV) light. The support enclosure is filled with a liquid photomonomer resin and light from at least one UV source is directed through apertures in a mask and through the at least one transparent wall into the enclosure so as to polymerize and at least partially cure columns of the resin therein to form polymerized struts defining a micro-truss core in the enclosure that is secured to the walls. The support enclosure is then inserted into an outer structural enclosure.
Abstract:
A system, method, and computer storage configured for determining period-ending positions of multiple parts movable by select actuation of corresponding active materials. The operations include receiving, from a work-source sensor, work-source input indicating a distance moved by the work source and a direction of the movement, and determining, based on the work-source input and a first and second status histories, corresponding to a first and a second part, respectively, first and second distances travelled by the parts, respectively. Operations also include calculating, based on the first and second distances determined and first and second period-starting positions, corresponding to the first and second parts, respectively, first and second period-ending positions for the first and second parts, respectively.
Abstract:
One variation includes a method including using a reversible dry adhesive system to reversibly couple a first substrate to a second substrate. One variation includes a method including using a reversible dry adhesive system to reversibly couple a first substrate to a second substrate during building or reconfiguring a product.
Abstract:
An anti-submarining seat cushion for a vehicle includes a main body constructed of an anisotropic material. The anisotropic material includes a primary material including a primary stiffness and a plurality of inserts that are dispersed throughout the primary material. The plurality of inserts exert an axial compressive force in response to the main body of the anti-submarining seat cushion experiencing a submarining load, where the axial compressive force is exerted in a direction that opposes the submarining load to increase an overall stiffness of the main body in a direction that aligns with the submarining load.
Abstract:
A vehicle seat includes a seat cushion, a seat back pivotally moveable between an upright position and a reclined position, and at least one upper arm support selectively moveable between a stowed position and an extended position, the at least one upper arm support adapted to provide support for an upper arm of an occupant when the seat back of the vehicle seat is in the reclined position and the at least one upper arm support is in the extended position.
Abstract:
Disclosed herein is a haptic device having at least one vibration motor, such as a linear vibration motor, configured to selectively generate a vibration at least partially along an actuator axis. An interfacing plate is configured to transmit the vibration and is at least partially composed of a compliant material. The linear vibration motor and the interfacing plate are embedded in a host. The host defines a first surface with a recessed zone extending from the first surface. The interfacing plate is configured to fit in the recessed zone. The host includes a chamber contiguous with the recessed zone, with the linear vibration motor being positioned in the chamber. The chamber may include respective walls having a plurality of protrusions configured to at least partially absorb the vibration. The haptic device may be part of a seat assembly.
Abstract:
A system for a seat of a vehicle includes a seat cushion, a seat cover, and a valve. The seat cushion forms at least part of a bottom of the seat. The seat cover encloses the seat cushion and forming a barrier to airflow out of the seat cushion. The seat cover forms a top surface of the seat bottom, a bottom surface of the seat bottom, and side surfaces of the seat bottom. The valve extends through the seat cover and is configured to regulate airflow out of the seat cushion through the valve.