摘要:
A semiconductor capacitor structure comprising sidewalls of conductive hemispherical grained material, a base of metal silicide material, and a metal nitride material overlying the conductive hemispherical grained material and the metal silicide material. The semiconductor capacitor structure is fabricated by forming a base of metal silicide material along the sidewalls of an insulative material having an opening therein, forming sidewalls of conductive hemispherical grained material on the metal silicide material, and forming a metal nitride material overlying the conductive hemispherical grained material and the metal silicide material.
摘要:
A semiconductor capacitor structure comprising sidewalls of conductive hemispherical grained material, a base of metal silicide material, and a metal nitride material overlying the conductive hemispherical grained material and the metal silicide material. The semiconductor capacitor structure is fabricated by forming a base of metal silicide material along the sidewalls of an insulative material having an opening therein, forming sidewalls of conductive hemispherical grained material on the metal silicide material, and forming a metal nitride material overlying the conductive hemispherical grained material and the metal silicide material.
摘要:
The present invention relates to a laser fuse. The laser fuse comprises an element comprising a heat conductive material. The fuse also includes an absorption element comprising a material with an adjustable capacity for heat or light absorption that overlays the heat conductive element. The fuse also includes an outer insulating element that overlays and encloses the heat conductive element and the absorption element.
摘要:
This invention includes methods of forming layers comprising epitaxial silicon, and field effect transistors. In one implementation, a method of forming a layer comprising epitaxial silicon comprises epitaxially growing a silicon-comprising layer from an exposed monocrystalline material. The epitaxially grown silicon comprises at least one of carbon, germanium, and oxygen present at a total concentration of no greater than 1 atomic percent. In one implementation, the layer comprises a silicon germanium alloy comprising at least 1 atomic percent germanium, and further comprises at least one of carbon and oxygen at a total concentration of no greater than 1 atomic percent. Other aspects and implementations are contemplated.
摘要:
A capacitor structure and method of forming it are described. In particular, a high-K dielectric oxide is provided as the capacitor dielectric. The high-K dielectric is deposited in a series of thin layers and oxidized in a series of oxidation steps, as opposed to a depositing a single thick layer. Further, at least one of the oxidation steps is less aggressive than the oxidation environment or environments that would be used to deposit the single thick layer. This allows greater control over oxidizing the dielectric and other components beyond the dielectric.
摘要:
The invention includes methods in which an angled implant is utilized to self-align a source/drain region implant with the top edge of a gateline of a vertical transistor structure. The invention also includes methods in which an angled implant is utilized to implant dopant beneath the gateline of a vertical transistor structure. Vertical transistor structures formed in accordance with methodology of the present invention can be incorporated into various types of integrated circuitry, including, for example, DRAM arrays.
摘要:
A deposition method includes contacting a substrate with a first initiation precursor and forming a first portion of an initiation layer on the substrate. At least a part of the substrate is contacted with a second initiation precursor different from the first initiation precursor and a second portion of the initiation layer is formed on the substrate. The substrate may be simultaneously contacted with a plurality of initiation precursors, forming on the substrate and initiation layer comprising components, derived from each of the plurality of initiation precursors. An initiation layer may be contacted with a deposition precursor, forming a deposition layer on the initiation layer. The deposition layer may be contacted with a second initiation precursor different from the first initiation precursor forming a second initiation layer over the substrate. Also, a first initiation layer may be formed substantially selectively on a first-type substrate surface relative to a second-type substrate surface and contacted with a deposition precursor, forming a deposition layer substantially selectively over the first-type substrate surface.
摘要:
One-transistor memory devices facilitate nonvolatile data storage through the manipulation of oxygen vacancies within a trapping layer of a field-effect transistor (FET), thereby providing control and variation of threshold voltages of the transistor. Various threshold voltages may be assigned a data value, providing the ability to store one or more bits of data in a single memory cell. To control the threshold voltage, the oxygen vacancies may be manipulated by trapping electrons within the vacancies, freeing trapped electrons from the vacancies, moving the vacancies within the trapping layer and annihilating the vacancies.
摘要:
Resistive heaters formed in two mask counts on a surface of a grating of a thermo optic device thereby eliminating one mask count from prior art manufacturing methods. The resistive heater is comprised of a heater region and a conductive path region formed together in a first mask count from a relatively high resistance material. A conductor formed from a relatively low resistance material is formed directly on the conductive path region in a second mask count. Thermo optic devices formed by these two mask count methods are also described.
摘要:
An antireflective layer formed from boron-doped amorphous carbon may be removed using a process which is less likely to over etch a dielectric layer than conventional technology. This layer may be removed by exposing the layer to an oxygen plasma (i.e. an “ashing” process), preferably concurrently with the ashing and removal of an overlying photoresist layer. An inventive process which uses the inventive antireflective layer is also described.