Abstract:
In an example, a programming method includes applying a program voltage to a selected access line commonly connected to a first memory cell of a first string of series-connected memory cells and to a second memory cell of a second string of series-connected memory cells while a data line is electrically connected to the first memory cell and electrically disconnected from the second memory cell, and while continuing to apply the program voltage to the selected access line, electrically disconnecting the data line from the first memory cell and subsequently electrically connecting the data line to the second memory cell.
Abstract:
Methods for reading data that was functionally stored include reading a pattern of threshold voltages from a particular group of memory cells, determining which pattern, of a plurality of patterns, matches the read pattern, and determining a group of decoded data associated with the pattern determined to match the read pattern.
Abstract:
Apparatuses and methods for reducing read disturb are described herein. An example apparatus may include a first memory subblock including a first select gate drain (SGD) switch and a first select gate source (SGS) switch, a second memory subblock including a second SGD switch and a second SGS switch, and an access line associated with the first and second memory subblocks. The apparatus may include a control unit configured to enable the first and second SGD switches and the first and second SGS switches during a first portion of a read operation and to provide a first voltage on the access line during the first portion. The control unit may be configured to disable the first SGD switch and the first SGS switches during a second portion of the read operation and to provide a second voltage on the access line during the second portion.
Abstract:
Some embodiments include apparatuses having a switch regulator that includes a first circuit with a first comparator to compare an output of the switch regulator to a first reference voltage, and to provide a control signal to enable or disable a first pass element based on the comparison. The switch regulator includes at least a second circuit having a second comparator to compare an output of the switch regulator to a second reference voltage that is lower than the first reference voltage, and to provide a control signal to enable or disable a second pass element based on the comparison. The switch regulator does not include Miller compensation circuits. Other apparatuses and methods according to other embodiments are described.
Abstract:
Methods for reading data that was functionally stored include reading a pattern of threshold voltages from a particular group of memory cells, determining which pattern, of a plurality of patterns, matches the read pattern, and determining a group of decoded data associated with the pattern determined to match the read pattern.
Abstract:
Methods for memory input timing self-calibration, apparatuses for input timing self-calibration, and systems are disclosed. One such method includes sequentially programming a plurality of delay trim settings into a delay circuit of a data path. The data path can include a data latch coupled to the delay circuit. A clock is coupled to the data latch to clock data into the data latch. Transitions of the data are substantially aligned with transitions of the clock. An output of the data latch is read after each delay trim setting is programmed. A boundary is determined between a first output state of the data latch and a second output state of the data latch wherein the boundary is associated with a particular delay trim setting of the plurality of delay trim settings. The particular delay trim setting is programmed into the delay circuit.
Abstract:
An embodiment of a method of programing might include applying a first voltage difference across a first memory cell to be programed, where applying the first voltage difference comprises applying a first channel bias voltage to a channel of the first memory cell, and applying a second voltage difference, substantially equal to the first voltage difference, across a second memory cell to be programed while applying the first voltage difference across the first memory-cell, where applying the second voltage difference comprises applying a second channel bias voltage to a channel of the second memory cell. The first channel bias voltage is different than the second channel bias voltage, and the first memory cell and the second memory cell are commonly coupled to an access line and are at different locations along a length of the access line.
Abstract:
Memories and methods for programming memories with multi-step programming pulses are provided. One method includes applying a plurality of programming pulses to cells of the memory device to be programmed, with each programming pulse of the plurality of programming pulses being configured to contribute towards programming a cell of the plurality of cells to each data state of a plurality of programmed data states. A first portion of each programming pulse is used to program certain cells towards a target data state associated with a first threshold voltage level, and a later portion of each programming pulse is used to program other cells towards a target data state associated with a second threshold voltage level that is lower than the first threshold voltage level.
Abstract:
In an embodiment, a memory device includes a stack of tiers of memory cells, a tier of local devices at a level above the stack of tiers of memory cells, and a tier of global devices at substantially a same level as the tier of local devices. A local device may provide selective access to a data line. A global device may provide selective access to a global access line. A tier of memory cells may be selectively coupled to a global access line by the global device of the tier of global devices.
Abstract:
A method of charging a floating gate in a nonvolatile memory cell comprises bringing a substrate channel within the memory cell to a first voltage, bringing a control gate to a programming voltage, and floating the substrate channel voltage while the control gate is at the programming voltage. Memory devices include state machines or controllers operable to perform the described method, and operation of such a state machine, memory device, and information handling system are described.