Abstract:
Instructions are provided to a vehicle braking mechanism for autonomous operation of the braking mechanism. At least one first parameter is retrieved for governing control of the braking mechanism. The first parameter is applied to operation of the braking mechanism. Data is collected relating to operation of the vehicle. At least one second parameter is determined for governing control of the braking mechanism.
Abstract:
A braking assistance system for a vehicle towed by a towing vehicle. The braking assistance system includes at least one sensor configured to be coupled to the towed vehicle and to detect information about at the towed vehicle and the towing vehicle, and an electronic control unit having a processor. The electronic control unit is in electronic communication with the sensor to receive information about the towed vehicle and the towing vehicle. The processor is configured to determine an electrical connection between the towing vehicle and the towed vehicle, determine a deceleration of the towed vehicle and the towing vehicle based on the information from the at least one sensor, identify a brake assist situation, and initiate a brake control operation to control braking of the towed vehicle during the brake assist situation.
Abstract:
In a vehicle brake device, a port is provided at a hydraulic chamber of a master cylinder and communicates with a reservoir tank. A piston movable in the hydraulic chamber for closing the port is provided with at least one piston-side port that faces on the port when at a first position. When a brake pedal is stepped on from a retracted state to move the piston from the first position to a second position spaced from the first position by a predetermined distance, the hydraulic chamber is blocked from the communication with the reservoir tank. The at least one piston-side port is provided therein with an orifice, so that the hydraulic pressure in the hydraulic chamber is raised at the time of a quick stepping of the brake pedal but is allowed to flow to the reservoir tank without being raised at the time of a non-quick stepping.
Abstract:
A method in which the driving behavior of a vehicle is influenced as a function of data on the surroundings in order to assist an avoidance maneuver, as soon as a risk of a collision is detected on the basis of the data from one or more environment sensors, in particular radar sensors and/or cameras, and the data from one or more vehicle sensors, in particular a steering angle sensor and/or yaw rate sensor and/or wheel speed sensors, and the vehicle has an electronically controlled brake system which permits a driver-independent buildup and modulation of the braking forces at the individual wheels of the vehicle, wherein when a risk of a collision is detected, in a first phase a turning-in operation by the driver is assisted and/or in a second phase a steering operation by the driver is damped. Furthermore, an electronic control unit for a brake system is defined.
Abstract:
A control unit of an assist controller for a vehicle estimates the visibility of a driver, calculates a visibility degradation ratio as a temporal change amount of the visibility, compares the visibility degradation ratio with a warning threshold that has been set in advance according to a vehicle speed, determines whether to warn the driver with a warning device, compares the visibility degradation ratio with a control characteristic change threshold that has been set in advance according to a vehicle speed, determines changes in control characteristics of the ABS function, skid preventing control function, and brake assist control function, compares the visibility degradation ratio with a deceleration control actuation threshold that has been set in advance according to a vehicle speed, and determines whether to execute automatic braking.
Abstract:
A brake booster device for a braking system of a vehicle includes: a booster body to which a brake-boosting force is exertable by an actuator device; a first piston rod component to which the brake-boosting force is at least partially transmittable via a first contact with the booster body, the first piston rod component contacting the booster body at a first contact surface such that the first piston rod component is at least partially adjustable; and a second piston rod component to which the brake-boosting force is at least partially transmittable via a second contact with the booster body, the second piston rod component contacting the booster body at a second contact surface such that the second piston rod component is adjustable together with the first piston rod component.
Abstract:
A system and method for increasing brake line pressure after brake booster vacuum has been exhausted is presented. In one example, brake line pressure is increased at a same rate after brake booster vacuum is exhausted as before brake booster vacuum is exhausted.
Abstract:
A vehicle brake system includes a cylinder, a master piston including a pressure applying piston and a projection portion, a servo chamber, a contact/separation determining means determining a separated state and a contact state between the input piston and the master piston, a pilot pressure generating device generating a pilot pressure, a servo pressure generating device, a servo pressure measuring device measuring a servo pressure, and a master pressure estimating means estimating a master pressure from the pilot pressure and a first servo ratio, which is a cross-sectional area ratio between a first pilot chamber and a servo pressure generating chamber, in a case of the separated state, and estimating the master pressure based on the servo pressure, the pilot pressure and a second servo ratio, which is a cross-sectional area ratio between a second pilot chamber and the servo pressure generating chamber, in a case of the contact state.
Abstract:
A driver assistance system for a motor vehicle includes at least one driving data sensor for sensing driving data that characterize the driving condition of the motor vehicle, and an electrical controller configured to initiate autonomous emergency braking of the motor vehicle when predetermined driving data has been sensed. A device is provided that is configured to detect a vehicle located in front of the motor vehicle in the direction of travel of the motor vehicle. The electrical controller maintains a brake of the motor vehicle in braking position or brings the brake into the braking position following an emergency braking action when a preceding vehicle is detected.
Abstract:
A brake-pedal depression force estimation device includes: a first deceleration calculation unit which uses a vehicle-mounted wheel speed sensor to calculate a first estimated vehicle-body deceleration for the vehicle; a second deceleration calculation unit which uses a vehicle-mounted vehicle-body acceleration sensor to calculate a second estimated vehicle-body deceleration for the vehicle; a gradient acquisition unit which acquires the gradient of change for the first estimated vehicle-body deceleration; and a depression force determination unit which determines if the brake-pedal depression force applied by a driver is high or not. The gradient acquisition unit acquires a first gradient of change and a second gradient of change. The depression force determination unit is configured so as to determine the brake-pedal depression force applied by a driver to be high when the second gradient of change is equal to or exceeds the first gradient of change.