Abstract:
In a method for forming a rustproof film on a PC strand, the thickness of the resin film is set to 200±80 μm, the pre-heating is performed within a temperature range from 60 to 150° C. to prevent an occurrence of a cob-webbing phenomenon as a result of melting of the synthetic resin powder coating material and the post-heating is performed within a range from 150 to 250° C. in order to uniformize the thickness of the coats adhered to the outer peripheral surfaces of the core wire and the surrounding wires, and the temperature of the pre-heating is set to be lower than the temperature of the post-heating, and the synthetic resin powder coating material including particles having diameters in a range from 0.1 to 250 μm is used, and the line speed in the series of steps is set to 5 to 10 m/min.
Abstract:
A twisted cable includes a main body which includes a central filament and a plurality of twisted filaments. The twisted filaments are arranged around the central filament and include six first filaments, twelve second filaments, and eighteen third filaments from the central filament outward. The cross-section of each first filament is the same with the one of each second filament. The cross-section of each first filament is larger than the one of the third filament but smaller than the one of the central filament. The twisted filaments are twisted around the central filament. As a result, the twisted cable of the present invention has improved structure strength, appropriate toughness, and smaller amount of longitudinal deformation.
Abstract:
Metal cord (C-1) with two concentric layers (Ci, Ce) of M+N construction, comprising an internal first layer or core (Ci) made up of M wire(s) (10) of diameter d1, M varying from 1 to 4, around which core are wound together in a helix, in an external second layer (Ce), N wires (11) of diameter d2, in which at least some of the gaps in the cord which are situated between the wires of the various contain a filling rubber (13) based on an unsaturated thermoplastic elastomer, particularly a styrene thermoplastic elastomer (TPS) such an SBS or SIS block copolymer for example.Such a thermoplastic elastomer, when used in the molten state, presents no problems of unwanted stickiness if the filling rubber overspills outside the cord after manufacture; its unsaturated and therefore (co)vulcanizable nature makes it extremely compatible with the diene rubber, for example natural rubber, matrices usually used as calendering rubber in the metal fabrics intended for reinforcing the tyres.
Abstract:
An electric transmission-cable is provided, comprising a cable core having at least two individually coated and stranded wires, and a conductor surrounding the core, wherein the core is compacted. Further, a method of fabricating such compacted steel core is provided.
Abstract:
Method of manufacturing a metal cord with three concentric layers (C1, C2, C3), of the type rubberized in situ, i.e. during its manufacture comprising a first, internal, layer or core (C1), around which there are wound together in a helix, at a pitch p2, in a second, intermediate, layer (C2), N wires of diameter d2, N varying from 3 to 12, around which second layer there are wound together as a helix at a pitch p3, in a third, outer, layer (C3), P wires of diameter d3, P varying from 8 to 20, the said method comprising the following steps: a sheathing step in which the core (C1) is sheathed with a rubber composition named “filling rubber”, in the uncrosslinked state; an assembling step by twisting the N wires of the second layer (C2) around the core (C1) thus sheathed in order to form, at a point named the “assembling point”, an intermediate cord named a “core strand” (C1+C2); an assembling step in which the P wires of the third layer (C3) are twisted around the core strand (C1+C2); a final twist-balancing step.
Abstract:
Method of manufacturing a multi-layer metal cord having a plurality of concentric layers of wires, comprising one or more inner layer(s) and an outer layer, of the type “rubberized in situ.” The method includes the following steps: at least one step of sheathing at least one inner layer with the rubber or the rubber composition by passing through at least one extrusion head; and an assembling step in which the wires of the outer layer are assembled around the inner layer adjacent to it, in order to form the multi-layer cord thus rubberized from the inside. The rubber is an unsaturated thermoplastic elastomer extruded in the molten state, preferably a thermoplastic elastomer of the thermoplastic stirene (TPS) elastomer type such as an SBS, SBBS, SIS or SBIS block copolymer for example.
Abstract:
A steel rope safety system includes at least one steel rope having at least one strand, and the at least one rope or at least one strand is compacted. Further, a method is provided for making a steel rope safety system comprising the step of providing at least two wires, the step of stranding the wires thereby forming a strand for a rope and the step of compacting the strand. The steel rope safety system includes a guardrail system having vertical poles and horizontal compacted ropes which are held in place by hooks. The steel rope safety system may include non-round shaped, such as trapezoidal shaped compacted wires. There is likewise provided the use of compacted steel ropes as impact reducing material.
Abstract:
A steel cord (30) with a high elongation at break of at least 5% comprises n strands (20), each of said strands (20) has m filaments (10) twisted together, n ranges from 2 to 7. m ranges from 2 to 9. The strands and the filaments are twisted in a same direction. The lay length of the cord is Lc and the lay length of said strand is Ls. The ratio of Ls to Lc (Ls/Lc) ranges from 0.25 to 1. Lc ranges from 16 mm to 26 mm. The strands are helically preformed. The E-modulus of the cord is more than 150000 N/mm2. The helical preforming of the strands allows to obtain a high elongation at break and a high E-modulus despite its long lay length Lc.
Abstract:
The twisted cable is produced by entwisting plural surround wires together on a central wire. The surround wires have several different sizes. The surround wires are arranged in a particular arrangement so as to reduce elongation when stretch force is exerted on the twisted cable. In addition, the outer surround wires have smoothened outer surfaces, so that the twisted cable has smooth and satiny outer surface. Friction and abrasion caused by pulling the twisted cable is reduced.
Abstract:
A tire with a radial carcass reinforcement made up of at least one layer of metal reinforcing elements, the tire comprising a crown reinforcement itself capped radially with a tread, the tread being connected to two beads via two sidewalls. At least 70% of the metal reinforcing elements of at least one layer of the carcass reinforcement are non wrapped cables which, in what is known as the air-wicking test, display a flow rate of less than 2 cm3/min, and at least 10% of the metal reinforcing elements of the at least one layer of the carcass reinforcement are cables which, in what is known as the air-wicking test, display a flow rate of greater than 4 cm3/min.