Abstract:
A battery module (10) for a motor vehicle has at least one battery cell (12) for producing and storing electrical energy and a rigid battery frame (14) in which the at least one battery cell (12) is accommodated. An absorption element (24) is secured to the battery frame (14) by connection sections (28). The absorption element (24) is spaced apart from the battery frame (14) in such a way that a cavity (26) is formed between the absorption element (24) and the battery frame (14).
Abstract:
An enclosure for a traction motor battery of a vehicle is disclosed that includes a plurality of impact absorbing members on the exterior of the enclosure. The impact absorbing members have an arc-shaped or partially cylindrical wall and a flat wall that define a partially cylindrical pocket. In an impact, the arc-shaped wall collapses toward the flat wall to absorb the impact force.
Abstract:
An electrical device includes a memory storing a value indicative the remaining available rated capacity of one or more batteries. The stored value is changed in use to reflect reducing capacity. The initial stored value is chosen so that there is a very high (e.g. >99.9%) confidence that the one or more batteries will provide at least the capacity indicated by the initial stored value. This reduces the chance of failure during emergency procedures. The one or more batteries may be integral to the electrical device. An override facility is provided.
Abstract:
An exemplary battery pack cover includes a polymer layer and a metallic layer grounded to a chassis of an electric vehicle. An exemplary method includes shielding battery cells of a battery pack against electromagnetic interference and thermal energy using a multilayer cover that is grounded to a chassis of an electrified vehicle.
Abstract:
The present invention discloses a secondary battery assembly with enhanced protection, which comprises a battery assembly whose two sides respectively have two electric conduction members each electrically connected with a lead; a casing having an accommodation space accommodating said battery assembly; and a protection layer into said casing fully to wrap said battery assembly. The secondary battery assembly is electrically connected with and supplies power to external devices through the leads. The protection layer is in a solid state at an ambient temperature and melts into a liquid state at a high temperature. The protection layer isolates the battery assembly from the external environment and absorbs and conducts heat generated by the battery assembly efficiently. Therefore, the present invention can prevent the overheated battery assembly from reacting with oxygen and exempt the battery assembly from combustion and explosion.
Abstract:
The present invention relates to a battery module, which includes one or more battery cell units, and the battery cell unit includes a battery cell, a fixing member located surrounding an outer circumference surface of the battery cell, and a heat absorbing material located between the battery cell and the fixing member, and as a result, heat generation inside the battery module is suppressed, and ignition between the series-connected battery cell units may be suppressed. Accordingly, excellent charge and discharge efficiency, an excellent cycle property and a lifespan property of the battery may be exhibited without concern for explosion or ignition of the battery module.
Abstract:
A battery enclosure comprising a support and a cover fabricated from a thermoset or thermoplastic polymer reinforced by at least a woven fabric reinforcement is described. In an embodiment the reinforcement is a woven glass fabric.
Abstract:
Methods for forming three-layer thin-film battery (TFB) structures by sequential electrophoretic deposition (EPD) on a single conductive substrate. The TFBs may be two-dimensional or three-dimensional. The sequential EPD includes EPD of a first battery electrode followed by EPD of a porous separator on the first electrode and by EPD of a second battery electrode on the porous separator. In some embodiments of a Li or Li-ion TFB, the separator includes a Li ion conducting solid. In some embodiments of a Li or Li-ion TFB, the separator includes an inorganic porous solid rendered ionically conductive by impregnation with a liquid or polymer. In some embodiments, the TFBs are coated and sealed with an EPDd PEEK layer.
Abstract:
A foldable frame for a battery cell assembly includes a one-piece main body. The main body has a first section, a second section, and a third section. The first section is coupled to each of a second section and a third section with living hinges. The first section is configured to receive a first battery cell. The second section is configured to receive an expansion unit and a second battery cell. The second section folds over the first battery cell. The third section is configured to fold over the second battery cell, thereby securing each of the first battery cell, the expansion unit, and the second battery cell within the foldable frame.
Abstract:
A battery pack includes a battery cell; an insulation holder coupled to the battery cell, the insulation holder having a fixing hole; and a protection circuit module coupled to the insulation holder, the protection circuit module having a fixing tab, wherein the fixing tab is fixed to the battery cell through the fixing hole.