Abstract:
An in-cell touch panel and a display device are disclosed. In the in-cell touch panel, a plurality of mutually independent self-capacitance electrodes arranged in the same layer are disposed on an array substrate in accordance the self-capacitance principle; a touch detection chip can determine the touch position by the detection of the capacitance variation of the self-capacitance electrodes; leads arranged in the same layer as pixel electrodes are disposed at gaps between the pixel electrodes and configured to connect the self-capacitance electrodes to the touch detection chip. The touch panel can reduce the manufacturing cost and improve the productivity.
Abstract:
Embodiments of the present invention relate to circuit layouts that are compatible with printing electronic inks, printed circuits formed by printing an electronic ink or a combination of printing and conventional blanket deposition and photolithography, and methods of forming circuits by printing electronic inks onto structures having print-compatible shapes. The layouts include features having (i) a print-compatible shape and (ii) an orientation that is either orthogonal or parallel to the orientation of every other feature in the layout.
Abstract:
A display device includes a display panel, and an electrostatic capacitive type touch panel which is formed in an overlapping manner with the display panel. A plurality of X electrodes and a plurality of Y electrodes intersecting with the X electrodes. A first signal line supplies signals to the X electrodes, a second signal line supplies signals to the Y electrodes, and the first signal line and the second signal line are formed on a flexible printed circuit board. A dummy electrode is formed adjacent to an electrode portion of each X electrode and electrode portion of each Y electrode, the dummy electrode does not overlap the X electrode and the Y electrode, and the dummy electrode does not electrically connect with the first and second signal lines.
Abstract:
Disclosed are a conductive sheet, a usage method of the conductive sheet and a capacitive type touch panel. For a first conductive sheet, two or more conductive first large grids are formed atop a first transparent base, wherein each first large grid is constituted by combining two or more small grids, and the shapes of facing sides of each first large grid are formed to alternate. For example, rectangular waveshapes of a first side portion of the first large grid and of a fourth side portion facing the first side portion are made to alternate, and rectangular waveshapes of a second side portion of the first large grid and of a third side portion facing the second side portion are made to alternate.
Abstract:
A flat cable (100) includes an insulative carrier (20) extending along a front-to-back direction, a set of signal conductors (10) held by the insulative carrier, and a metal grid layer (30) attached to the insulative carrier. The insulative carrier has a top face facing upwardly and a bottom face facing downwardly. The insulative carrier defines a set of receiving passageways (210) disposed along a transverse direction perpendicular to the front-to-back direction. The set of signal conductors extend along the front-to-back direction and have different pitches along the transverse direction. The metal grid layer is attached to the top face or the bottom face. The metal grid layer has different densities along the front-to-back direction in order to make the impedance of the flat cable consistent along the front-to-back direction.
Abstract:
A configuration for routing electrical signals between a conventional electronic integrated circuit (IC) and an opto-electronic subassembly is formed as an array of signal paths carrying oppositely-signed signals on adjacent paths to lower the inductance associated with the connection between the IC and the opto-electronic subassembly. The array of signal paths can take the form of an array of wirebonds between the IC and the subassembly, an array of conductive traces formed on the opto-electronic subassembly, or both.
Abstract:
The present invention provides an electroconductive sheet and a touch panel which do not impair visibility in a vicinity of an electrode terminal in a sensing region. In an electroconductive sheet which has an electrode pattern constructed of a metal thin wire and an electrode terminal that is electrically connected to an end of the electrode pattern, a transmittance of the electrode pattern is 83% or more, and when the transmittance of the electrode pattern is represented by a %, a transmittance of the electrode terminal is controlled to be (a-20)% or more and (a-3)% or less.
Abstract:
In the mesh pattern of the conductive sheet of the invention in which openings having different shapes are arrayed in plan view, a standard deviation of an area of each of the openings is equal to or greater than 0.017 mm2 and equal to or less than 0.038 mm2, in a two-dimensional distribution of centroid positions of the openings; a standard deviation for a root mean square deviation of each of the centroid positions which are disposed along a predetermined direction, with respect to a direction perpendicular to the predetermined direction is equal to or greater than 15.0 μm; or a standard deviation over a radial direction of a value expressed by a common logarithm of a standard deviation along an angular direction in a power spectrum of the mesh pattern is equal to or greater than 0.965 and equal to or less than 1.065.
Abstract:
A touch-sensitive device includes a transparent substrate, a touch-sensing structure, a decorative layer, a trace layer, a passivation layer and a sheltering layer. The touch-sensing structure is disposed on the transparent substrate and located in a touch-sensitive region. The decorative layer is disposed on the transparent substrate and located in a non-touch-sensitive region, and the trace layer is disposed on the decorative layer. The passivation layer is disposed on the transparent substrate and at least covers the touch-sensing structure and the trace layer. The sheltering layer is disposed at least on the passivation layer and located in the non-touch-sensitive region.
Abstract:
A multilayer circuit substrate includes: a first conductor layer in which first transmission lines and a second transmission line are formed; a second conductive layer facing the first conductive layer through an insulating layer; and a third conductive layer that faces the second conductive layer through an insulating layer and that has a bypass line formed therein. The bypass line is electrically connected to the second transmission line of the first conductive layer through via conductors and such that the second transmission line and the first transmission lines intersect with each other. In the second conductive layer, a ground conductor is formed at least in a position that faces the bypass line, and the first transmission lines are made narrower at the intersection with the second transmission line than other portions.