摘要:
An optical pressure-sensitive adhesive of the invention comprises a base polymer having a functional group (F); and a coupling agent that has a benzyl ester group and is represented by Formula (1): wherein A1 and A2 are different functional groups, one of A1 and A2 shows reactivity or interaction with the functional group (F) of the base polymer, R1 is an optionally substituted alkylene group of 1 to 12 carbon atoms and/or an optionally substituted phenylene group, and R2 and R3 are each a hydrogen atom or an alkyl group of 1 to 12 carbon atoms and may be the same or different. The pressure-sensitive adhesive is use in pressure-sensitive adhesive optical films and so on that is excellent in terms of both durability and release property.
摘要:
A method for laser ashing of polyimide for a semiconductor manufacturing process using a structure, the structure comprising a supporting material attached to a semiconductor chip by a polyimide glue, includes releasing the supporting material from the polyimide glue, such that the polyimide glue remains on the semiconductor chip; and ashing the polyimide glue on the semiconductor chip using an ablating laser.
摘要:
A solid-state laser lift-off apparatus comprises: a solid-state laser (1), a light beam shaping lens (3), motors of oscillating mirrors (5,7), oscillating mirrors (4,6), a field lens (9), a movable platform (10), an industrial control computer and control software (8). The light beam shaping lens (3) is behind the solid-state laser (1), shaping the laser beam from the solid-state laser (1) into required shape. The motors of oscillating mirrors (5,7) are in front of the field lens (9), controlling the movement of the oscillating mirrors (4,6) according to the instruction of the control software (8) to implement different light beam scanning paths. A lift-off method for applying the solid-state laser lift-off apparatus uses a small laser spot to perform scanning, and enables damage-free separation of GaN from a sapphire substrate.
摘要:
An apparatus and method for manufacturing a light emitting devices by separating a semiconductor layer from a substrate includes a laser beam source for emitting a laser beam, a mesh-typed mask having a plurality of apertures through which the laser beam passes to provide a plurality of unit beams; and an imaging lens for forming a plurality of beam spots by focusing the plurality of unit beams at an interface between a substrate and a semiconductor layer to separate the substrate from the semiconductor layer.
摘要:
Laser lift off systems and methods may be used to provide monolithic laser lift off with minimal cracking by reducing the size of one or more beam spots in one or more dimensions to reduce plume pressure while maintaining sufficient energy to provide separation. By irradiating irradiation zones with various shapes and in various patterns, the laser lift off systems and methods use laser energy more efficiently, reduce cracking when separating layers, and improve productivity. Some laser lift off systems and methods described herein separate layers of material by irradiating non-contiguous irradiation zones with laser lift off zones (LOZs) that extend beyond the irradiation zones. Other laser lift off systems and methods described herein separate layers of material by shaping the irradiation zones and by controlling the overlap of the irradiation zones in a way that avoids uneven exposure of the workpiece. Consistent with at least one embodiment, a laser lift off system and method may be used to provide monolithic lift off of one or more epitaxial layers on a substrate of a semiconductor wafer.
摘要:
A chuck table adhesively holds a rear face of a mount frame subject to a dicing process with a protective tape joined thereto, and a suction plate having a heater embedded therein contacts and heats the protective tape. Consequently, an adhesion layer of the protective tape reduces its adhesive force due to foaming and expansion. Thereafter, the suction plate moves upward while keeping its suction force to separate the protective tape from all of chips.
摘要:
A debonder apparatus for debonding two via an adhesive layer temporary bonded wafers includes a top chuck assembly, a bottom chuck assembly, a static gantry supporting the top chuck assembly, an X-axis carriage drive supporting the bottom chuck assembly, and an X-axis drive control. The top chuck assembly includes a heater and a wafer holder. The X-axis drive control drives horizontally the bottom chuck assembly from a loading zone to a process zone under the top chuck assembly and from the process zone back to the loading zone. A wafer pair comprising a carrier wafer bonded to a device wafer via an adhesive layer is placed upon the bottom chuck assembly at the loading zone oriented so that the unbonded surface of the device wafer is in contact with the bottom assembly and is carried by the X-axis carriage drive to the process zone under the top chuck assembly and the unbonded surface of the carrier wafer is placed in contact with the top chuck assembly. The X-axis drive control initiates horizontal motion of the X-axis carriage drive along the X-axis while heat is applied to the carrier wafer via the heater and while the carrier wafer is held by the top chuck assembly via the wafer holder and thereby causes the device wafer to separate and slide away from the carrier wafer.
摘要:
A device for centering circular wafers includes a support chuck for supporting a circular wafer to be centered upon its top surface, left, right and middle centering linkage rods and a cam plate synchronizing the rectilinear motion of the left, right and middle centering linkage rods. The left centering linkage rod includes a first rotating arm at a first end and rectilinear motion of the left centering linkage rod translates into rotational motion of the first rotating arm. The right centering linkage rod comprises a second rotating arm at a first end, and rectilinear motion of the right centering linkage rod translates into rotational motion of the second rotating arm. The first and second rotating arms are rotatable around an axis perpendicular to the top surface of the support chuck and comprise a curved edge surface configured to roll against the curved edge of the circular wafer. The middle centering linkage rod includes a third alignment arm at a first end. The third alignment arm is placed in contact with the curved edge of the circular wafer and linear motion of the middle centering linkage rod in the Y-direction pushes the third alignment arm and the circular wafer toward or away from the center of the support chuck. The cam plate includes first and second linear cam profiles. The first cam profile provides rectilinear motion for the middle centering linkage rod and the second linear cam profile provides rectilinear motion for the left and right centering linkage rods.
摘要:
A pressure sensitive adhesive sheet according to the present invention is a resin laminate, including a high thermally shrinkable base layer having relatively high thermal shrinkage ratio, having a ratio (A:B) of the thermal shrinkage ratio in a main shrinkage direction [A (%)] to the shrinkage ratio in a direction perpendicular to the main shrinkage direction [B (%)] of 1:1 to 10:1, and a low thermally shrinkable base layer having relatively low thermal shrinkage ratio, the high and low thermally shrinkable base layers bonded to each other via a self-adhesive layer, wherein the resin laminate bends toward the high thermally shrinkable base layer side when heated from any one direction and can automatically curl from one terminal unidirectionally to form a tubular roll by further heating. The pressure sensitive adhesive sheet can be separated from an adherend smoothly when heated from any one direction. Thus, it can be used, for example, as a pressure sensitive adhesive sheet for semiconductor wafer polishing.
摘要:
The invention provides an apparatus for de-bonding a flexible device and method thereof. The apparatus for de-bonding a flexible device includes a carrier to mount a carrier substrate thereon, a release layer thereon and a flexible device covering the release layer. A separation device disposed over the carrier is used to separate the flexible device from the release layer and the carrier substrate with air entering into an interface between the flexible device and the release layer. A vacuum device disposed over the carrier is used to suction the flexible device.