Abstract:
A process for synthesizing isooctyl nitrate in a continuous flow reactor comprises flowing a H2SO4—HNO3 mixture within a flow reactor, flowing isooctyl alcohol into said flow reactor so as to mix the isooctyl alcohol with the H2SO4—HNO3 mixture and produce a reaction mixture stream flowing in said reactor, maintaining the reaction mixture stream flowing in said flow reactor at a reaction temperature within in the range −10° to 35° C. inclusive, and wherein the residence time of the reaction mixture stream in the flow reactor is greater than or equal to 5 seconds and less than or equal to 40 seconds, and wherein the H2SO4 of the H2SO4—HNO3 mixture is H2SO4 having a concentration of in the range of 85 to 95% inclusive, more desirably 88 to 92% inclusive, most desirably of 90%.
Abstract translation:在连续流动反应器中合成硝酸异辛酯的方法包括使流动反应器内的H 2 SO 4 -HNO 3混合物流动,将异辛醇流入所述流动反应器中,以将异辛醇与H 2 SO 4 -HNO 3混合物混合,并产生流动的反应混合物流 在所述反应器中,将反应混合物流保持在所述流动反应器中,反应温度在-10℃至35℃的范围内,其中反应混合物流在流动反应器中的停留时间大于或等于 等于5秒且小于或等于40秒,并且其中H 2 SO 4 -HNO 3混合物的H 2 SO 4为浓度为85-95%(含)范围内的H 2 SO 4,更优选为88-92%,最优选为 90%。
Abstract:
This invention relates generally to enantiomerically enriched C—H activated ruthenium olefin metathesis catalyst compounds which are stereogenic at ruthenium, to the preparation of such compounds, and the use of such catalysts in the metathesis of olefins and olefin compounds, more particularly, in the use of such catalysts in enantio- and Z-selective olefin metathesis reactions. The invention has utility in the fields of catalysis, organic synthesis, polymer chemistry, and industrial and fine chemicals chemistry.
Abstract:
The invention relates to a nitration method having the following principles: a phosgene species is converted with two equivalent silver nitrates into a double-mixed anhydride of carbonic acid and nitric acid, known here as carbonic acid dinitrate (I). Said operation is carried out in situ, and the formed dinitrate decomposes spontaneously. In addition to carbon dioxide, nitrate ions and nitronium ions are formed, said ions comprising electrophiles which are necessary for nitration. The solution which is used is acetonitrile, and is insignificant if the alcohol species is dissolved or suspended. The necessary equivalent silver nitrates are introduced into the system and optionally heated or cooled to the desired temperature. Subsequently, the acid chloride is introduced slowly, drop by drop or slowly little by little. Phosgene, diphosgene, triphosgene and chloroformic acid ester can be used as carbonic acid dichloride and monochloride, and their thiocarbonic acid analogues. A brown colouration and precipitated silver chloride display the formation of the carbonic acid reactants, said brown colouration rapidly discolouring due to an immediate reaction of the nitronium ions with the substrate with is to be nitrated. Towards the end of the addition of phosgene, the brown colouration remains for longer and longer until it no longer disappears. Then, it is stirred for another hour at room temperature. In the event of high acid-sensitive educts, non-nucleophilic nitrogen bases such as DBU can be added to the system in order to intercept the formation of nitric acid.
Abstract:
Disclosed are a process and an apparatus for synthesizing nitroalkanes by reaction of a hydrocarbon feedstock with aqueous nitric acid. By using an isothermal reactor with multiple input ports for aqueous nitric acid, a hydrocarbon feedstock may be sequentially exposed to a plurality of flows of aqueous nitric acid as it flows through the reactor.
Abstract:
At the present invention relates to a new process for the preparation of the (S)-naproxen 4-nitrooxybutyl ester and to new intermediates obtained and used therein. The invention further relates to the use of the new intermediates for the manufacturing of pharmaceutically active compounds such as (S)-naproxen 4-nitrooxybutyl ester. The invention also relates to the use of (S)-naproxen 4-nitrooxybutyl ester prepared according to the process of the present invention for the manufacturing of a medicament for the treatment of pain.
Abstract:
A process and reaction vessel for producing alkyl nitrite is disclosed the process comprising (a) contacting nitric oxide, lower alcohol and oxygen in a reaction zone such that alkyl nitrite is formed, said reaction zone comprising a reactor section and a rectification section, (b) supplying a liquid scrubbing agent to an upper portion of the rectification section, (c) withdrawing a gaseous alkyl nitrite product stream from the upper portion of the rectification section, and (d) withdrawing a liquid stream from a lower portion of the reactor section. The reactor section provides intimate vapor-liquid contact sufficient to enhance the conversion of nitric oxide to alkyl nitrite and the rectification section provides sufficient vapor residence time to enhance conversion of oxygen, as well as sufficient rectification capabilities to reduce the amounts of water and nitric acid in the gaseous alkyl nitrite product stream.
Abstract:
The invention relates to a process for the preparation of nitrated aromatic compounds by the mixed acid process, in which water is removed from the reaction mass by passing an inert gas through it.
Abstract:
A process for the continuous manufacture of a nitric acid ester of a polyhydric alcohol by reacting the polyhydric alcohol with nitrating acid, comprising circulating a stream of waste nitrating acid through a closed loop, injecting nitrosulphuric acid into said circulating stream, cooling the stream downstream of the injection, feeding the alcohol via a mixer into the cooled stream, cooling the stream to remove heat produced by reaction, and separating nitrated polyhydric alcohol from the loop, along with sufficient waste acid to keep the volume in the loop substantially constant, circulation being carried out at a rate such that the average residence time of waste acid in the loop is less than about 15 minutes, preferably about 2 to 5 minutes. This avoids the prolonged storage of large quantities of waste acid which is inherently dangerous. When the system is to be shut down all the circulating waste acid can be replaced by fresh nitrosulphuric acid, relatively small in volume.
Abstract:
PROCESS FOR THE PREPARATION OF STABLE PENTOLITE FROM CRUDE PENTAERYTHRITOL TETRANITRATE COMPRISING AGITATING IN WATER A MIXTURE OF MOLTEN TRINITROPOTOLUENE AND CRUDE PENTAERYTHRITOL TETRANITRATE AT A TEMPERATURE ABOVE THE MELTING POINT OF THE TRINITROTOLUENE AND BELOW THE MELTING POINT OF THE PENTAERYTHRITOL TETRANITRATE, WHILE MAINTAINING THE PH OF THE WATER IN THE RANGE FROM 7 TO ABOUT 10, FOLLOWED BY SEPARATING THE PENTOLITE FROM THE AQUEOUS PHASE.