摘要:
A communication receiver (100) employs a discrete time digital phase locked loop (142) for maintaining a generated signal (144) locked to a reference signal (136). The discrete time digital phase locked loop (142) includes a phase detector (202), an accumulator (219), an adder (227), and a controlled oscillator (232). The accumulator (219) is connected to the phase detector (202) and a reference signal (136) for calculating an accumulator output value equal to a first sum of a current sample generated by the phase detector (202), and all of the plurality of discrete phase error samples produced prior to the current sample. The adder (227) is connected to the phase detector (202) and the accumulator (219) for forming a second sum of the current sample and the accumulator output value. The controlled oscillator (232) receives the second sum, which is utilized for controlling the controlled oscillator (232).
摘要:
The invention is a write clock generator circuit adapted for use in disk drives having either dedicated servo or sector servo architecture. A high frequency write clock signal is generated from a relatively low frequency reference signal synchronized to disk rotation. The reference signal may originate from a number of sources, including a dedicated servo pattern, a sector servo pattern, any index pattern, or a spindle pulse. A clock generates a clock signal having a predetermined number of cycles for each reference period. A counter coupled to the output of the clock counts the number of clock cycles generated for each reference period. The number of cycles is then compared to an expected number corresponding to a desired clock frequency. If the compared numbers are not the same, an error signal is generated. Control logic receives the error signal and the reference signal, and generates an appropriate control signal. The control signal is coupled to the clock and thereby adjusts the write clock signal frequency.
摘要:
A monolithic frequency converter using a feedback control loop generates a source of synthesized frequency signals over a wide dynamic range based on a timing source such as a crystal oscillator or an external frequency source. The frequency converter includes a controlled oscillator, a frequency counter, a timing signal generator and, connected between the frequency counter and the controlled oscillator, a digital to analog converter and a difference integrator. The controlled oscillator generates a clock signal at a frequency controlled by an electrical signal. The difference integrator is connected to an input signal terminal and connected to the timing signal generator. The difference integrator determines a difference signal between the input signal and a signal operated upon by the digital to analog converter and integrates the difference signal under control of a timing signal generated by the timing signal generator. The frequency converter has a highly linear transfer function which is established by the resolution of a frequency counter. For example, a transfer function having approximately 0.1% accuracy in linearity is achieved using a 10-bit resolution frequency counter. Using indirect frequency synthesis, the controlled oscillator generates precisely controlled timing signals.
摘要:
An oscillator system and method in which a time period (inverse of frequency) of a multi-stage ring oscillator (ROSC) is adjusted by a bias current which controls the charging and discharging times of respective capacitors (e.g., interelectrode capacities) within each stage. The time periods of the unadjusted oscillator are counted along with the time periods of a reference clock over a same period of time and a count difference between the two counts is determined. The count difference is applied by a logic circuit in accordance with an algorithm relating count differences to incremental bias current levels to adjust the frequency of the oscillator. The logic circuit generates digital gate signals corresponding to the count difference and these signals automatically select the bias current level needed to bring the oscillator frequency into close agreement with the reference clock frequency. The digital gate signals are stored in a non-volatile memory so that the oscillator will continue to operate at the adjusted frequency (i.e., that of the reference clock) even if the reference clock is no longer present and power is temporarily removed. The oscillator system is well suited for implementation by complementary metal oxide semiconductor (CMOS) technology as part of an integrated circuit (IC).
摘要:
Apparatus for developing synchronization of an intermediate layer of signal such as the transport or multiplex layer of a multi-layered compressed video signal, includes at the encoding end of the system a modulo K counter which is clocked responsive to a system clock, and the count valued is embedded in the signal at the transport layer according to a predetermined schedule. At the receiving end of the system a similar counter is responsive to a controlled receiver clock signal and the count value of this counter is sampled at the arrival of the count values embedded in the transport layer. The differences of successive sampled count values of the receiver counter are compared with the differences of corresponding successive values of the embedded count values in the transport layer to provide a signal to control the receiver clock signal.
摘要:
The delay period of a delay circuit is maintained, over time, near to a desired delay, by generating information representative of the present delay period of the delay circuit, and altering the delay period, from time to time during operation, based on the present delay information and the desired delay. The present delay is measured by a reference circuit having a delay characteristic corresponding to the delay characteristic of the delay circuit. Both the reference and multiple delay circuits are formed with the same configuration on a single integrated circuit.
摘要:
In a phase accumulation type signal generatorm when an adder of a phase accumulator yields a carry output, a difference circuit generates an analog voltage V.sub.1 =a.sub.2 (n-k.sub.s) which is in proportion to the difference between the output k.sub.s of the adder and a phase add amount n. A ramp function voltage generator generates a ramp function voltage V(t)=nfa.sub.1 a.sub.3 t/cm which is in proportion to the product of the frequency f/m of a clock and the phase add amount n. The analog voltage and the ramp function voltage are compared by a comparator, which outputs a synchronization pulse when they agree with each other.
摘要:
A clock multiplier/jitter attenuator circuit provides a stable clock which is a multiple frequency of the average frequency of an external digital data stream. The external data is written into successive storage cells of a FIFO at its own clock rate and read out of the FIFO at the rate of an internal clock signal which is formed by frequency dividing the stable clock. The relative locations of the cell being written into and the cell being read out of are determined at periodic time intervals, and these relative locations are used to adjust the frequency of an internal oscillator which generates the stable clock. The instantaneous jitter on the digital data stream is absorbed by the FIFO.
摘要:
An oscillator produces an output signal which is frequency locked to a reference signal but phased locked to a triggering signal. The oscillator includes a NOR gate having its output fed back to one of its inputs through a programmable delay circuit while the triggering signal is applied to another of its inputs. When enabled by the triggering signal, the output signal of the NOR gate oscillates at a frequency inversely proportional to the delay time of the delay circuit. The delay time is controlled by a control circuit which counts NOR gate output signal cycles occurring during a predetermined number of reference signal cycles and increments the delay time when the count is higher than expected for an oscillator output signal of a desired frequency and decrements the delay time when the count is lower than expected.
摘要:
A variable frequency oscillator 10 has an output frequency Fo responsive to a voltage input Vo derived from an analogue integrator 11 controlled by potentiometer 15, 16, the frequency Fo being displayed on frequency meter 19 having a ghost least significant digit. A converter 24 responds to the digit of a digital output fed to a digital to analogue converter 20 providing an error voltage Ve whose magnitude is proportional to the deviation of the digit from a datum, e.g. 5, and whose polarity depends on whether the deviation is + or -. The voltage Ve is also fed to the integrator 11 to control the voltage Vo.An arrangement is also described in which the voltage Ve is derived from the divider chain of a gate period generator controlling a frequency counter whose input is Fo.