Abstract:
A method of making a waveguide, comprises: extruding a first dielectric material as a waveguide core of the waveguide, wherein the waveguide core is elongate; and coextruding an outer layer with the waveguide core, wherein the outer layer is arranged around the waveguide core.
Abstract:
Molded electronics package cavities are formed by placing a sacrificial material in the mold and then decomposing, washing, or etching away this sacrificial material. The electronics package that includes this sacrificial material is then overmolded, with little or no change needed in the overmolding process. Following overmolding, the sacrificial material is removed such as using a thermal, chemical, optical, or other decomposing process. This proposed use of sacrificial material allows for formation of complex 3-D cavities, and reduces or eliminates the need for precise material removal tolerances. Multiple instances of the sacrificial material may be removed simultaneously, replacing a serial drilling process with a parallel material removal manufacturing process.
Abstract:
An electromagnetic interference shield is described for semiconductor chip packages. In some embodiments, a package has a semiconductor die. a redistribution layer, a mold compound over the die, a plurality of vias through the mold compound and outside the die to form a shield, and a metal film over the vias. and over the mold compound.
Abstract:
A circuit interconnect may be used in biometric data sensing and feedback applications. A circuit interconnect may be used in device device-to-device connections (e.g., Internet of Things (IoT) devices), including applications that require connection between stretchable and rigid substrates. A circuit interconnect may include a multi-pin, snap-fit attachment mechanism, where the attachment mechanism provides an electrical interconnection between a rigid substrate and a flexible or stretchable substrate. The combination of a circuit interconnect and flexible or stretchable substrate provides improved electrical connection reliability, allows for greater stretchability and flexibility of the circuit traces, and allows for more options in connecting a stretchable circuit trace to a rigid PCB.
Abstract:
Embodiments of the invention include a packaged device with transmission lines that have an extended thickness, and methods of making such device. According to an embodiment, the packaged device may include a first dielectric layer and a first transmission line formed over the first dielectric layer. Embodiments may then include a second dielectric layer formed over the transmission line and the first dielectric layer. According to an embodiment, a first line via may be formed through the second dielectric layer and electrically coupled to the first transmission line. In some embodiments, the first line via extends substantially along the length of the first transmission line.
Abstract:
A method including disposing a transmission line or an antenna on dielectric material; and removing a portion of the dielectric material from a region adjoining the transmission line or the antenna where the electromagnetic radiation from the transmission line or the antenna is predetermined to be greater than another portion of the dielectric material. An apparatus including a package substrate including a transmission line coupled to an antenna, the transmission line and the antenna disposed on a dielectric layer including an organic dielectric material having a first dielectric constant and a second material having a dielectric constant less than the first dielectric constant, wherein the second dielectric material adjoins a portion of the transmission line or the antenna.
Abstract:
Embodiments of the present disclosure are directed to a single-package communications device that includes an antenna module with a plurality of independently selectable arrays of antenna elements. The antenna elements of the different arrays may send and/or receive data signals over different ranges of signal angles. The communications device may further include a switch module to separately activate the individual arrays. In some embodiments, a radio frequency (RF) communications module may be included in the package of the communications device. In some embodiments, the RF communications module may be configured to communicate over a millimeter-wave (mm-wave) network using the plurality of arrays of antenna elements.
Abstract:
Embodiments disclosed herein include die modules, electronic packages, and systems. In an embodiment, a die module comprises a first substrate and a first die over the first substrate. In an embodiment, the die module further comprises a second die over the first substrate adjacent to the first die. In an embodiment, the die module further comprises a via module through the first substrate. In an embodiment, the via module comprises a second substrate, where the second substrate comprises glass, and a via through the second substrate.
Abstract:
Embodiments include waveguide launchers and connectors (WLCs), and a method of forming a WLC. The WLC has a waveguide connector with a waveguide launcher, a taper, and a slot-line signal converter; and a balun structure on the slot-line signal converter, where the taper is on the slot-line signal converter and a terminal end of the waveguide connector to form a channel and a tapered slot. The WLC may have the waveguide connector disposed on the package, and a waveguide coupled to waveguide connector. The WLC may include assembly pads and external walls of the waveguide connector electrically coupled to package. The WLC may have the balun structure convert a signal to a slot-line signal, and the waveguide launcher converts the slot-line signal to a closed waveguide mode signal, and emits the closed signal along channel and propagates the closed signal along taper slot to the waveguide coupled to waveguide connector.
Abstract:
Described herein are architectures, platforms and methods for implementing an antenna array with a dynamic polarization adjustment in a portable device.