Abstract:
A connecting capillary for analytical measuring-technology, in particular for high pressure liquid chromatography and for capillary electrophoresis, comprises a glass capillary, in particular a fused silica capillary, which is characterized in that the glass capillary is surrounded at least it its end regions by a sheath of polyetheretherketone (PEEK) or a PEEK-derivative.
Abstract:
A needle (300) for handling a fluid in an analysis system (10), the needle (300) comprising a needle body (302) made of a ceramic material and having a fluid conduit (304) extending between a fitting end (306) and a seat end (308), the fitting end (306) being connectable to a fitting (402) and the seat end (308) being insertable into a seat (602), wherein the needle body (302) is tapering, particularly conically tapering, towards the fitting end (306), a fixing body (310) arranged on the needle body (302) next to the fitting end (306) for exerting an axial force when the needle body (302) is connected to the fitting (402), and a slide-on element (312) to be slid over the needle body (302) so as to push the fixing body (310) towards the fitting end (306).
Abstract:
A device for transporting liquids and supporting crystal growth comprises a hollow space (20) in a body (1) with a first side. The hollow space comprises at least a first orifice (9) and is being adapted for generating a directed capillary ascension effect towards the at least first orifice (9).
Abstract:
A sealed fluidic component (280) for use in a fluidic flow path is made by providing a composite material (300) comprising a first material (305) and a second material (310), wherein the first material (305) and the second material (310) are different PAEK materials with the first material (305) having a lower melting point than the second material (310). The composite material (300) is heated in order to provide a sealing by the first material (305).
Abstract:
A fitting for coupling a tubing to another component of a fluidic device, the fitting comprising a male piece having a front ferrule and a back ferrule both being slidable on the tubing, the male piece further having a first joint element configured slidably on the tubing, and a female piece having a recess configured for accommodating the front ferrule and the tubing and having a second joint element configured to be joinable to the first joint element, wherein the back ferrule is configured in such a manner that, upon joining the first joint element to the second joint element, the back ferrule exerts a pressing force on the front ferrule to provide a sealing between the front ferrule and the female piece, and the back ferrule exerts a grip force between the male piece and the tubing.
Abstract:
A valve for liquid separation, especially for analytical or preparative liquid chromatography, includes a valve body having an inlet and at least two outlets connected to the inlet for a flow of liquid. The valve body includes a sealing element having shut-off surfaces for alternately shutting off the outlets. The shut-off surfaces face away from each other and have the shape of a cone segment or spherical segment.
Abstract:
A diode array spectrophotometer has an entrance slit apparatus, a diffraction grating, a diode array and a casing to define the relative positions of these elements. The casing and the holder for accepting the diffraction grating are made of a ceramic whose coefficient of thermal expansion is adapted to that of the diode array. The grating holder has a cylindrical outer surface and is situated within a conic-frustum-shaped opening of the casing. Between the grating holder and the conic-frustum-shaped opening, there are a plurality of filler elements which are made of ceramic or glass.
Abstract:
A fitting element, in particular for an HPLC application, is configured for providing a fluidic coupling of a tubing to a fluidic device. The fitting element comprises a gripping piece to exert—upon coupling of the tubing to the fluidic device—a grip force (G) between the fitting element and the tubing. The gripping piece comprises a hydraulic element configured to transform an axial force (S) into a hydraulic pressure (P) within the hydraulic element. The hydraulic pressure (P) in the hydraulic element causes the grip force (G).
Abstract:
A fitting element (100), in particular for an HPLC application (10), is configured for providing a fluidic coupling of a tubing (102) to a fluidic device (103). The fitting element (100) comprises a gripping piece (108) to exert—upon coupling of the tubing (102) to the fluidic device (103)—a grip force (G) between the fitting element (100) and the tubing (102). The gripping piece (108) comprises a hydraulic element (170) configured to transform an axial force (S) into a hydraulic pressure (P) within the hydraulic element (170). The hydraulic pressure (P) in the hydraulic element (170) causes the grip force (G).
Abstract:
For dispensing volumes of liquids, a hinged septum has a flap inclined with respect to the longitudinal axis of a liquid channel. A deposition device deposits liquid on the flap, wherein the deposition device is arranged to contact the flap.