Abstract:
At least one MOS parameter of a MOS fuse is characterized to provide at least one MOS parameter reference value. Then, the MOS fuse is programmed by applying a programming signal to the fuse terminals so that programming current flows through the fuse link. The fuse resistance is measured to provide a measured fuse resistance associated with a first logic value. A MOS parameter of the programmed MOS fuse is measured to provide a measured MOS parameter value. The measured MOS parameter value is compared to the reference MOS parameter value to determine a second logic value of the MOS fuse, and a bit value is output based on the comparison.
Abstract:
E-fuses in an E-fuse memory array are programmed by applying a first programming pulse to a plurality of E-fuses to program the plurality of E-fuses to a first state; and then applying a second programming pulse to at least a selected E-fuse in the plurality of E-fuses to program the selected E-fuse to a second state.
Abstract:
A memory cell with a logic bit has a first one-time-programmable (“OTP”) memory element providing a first OTP memory element output and a second OTP memory element providing a second OTP memory element output. A logic operator coupled to the first OTP memory element output and to the second OTP memory element output and provides a binary memory output of the memory cell. In a particular embodiment, the first OTP memory element is a different type of OTP memory than the second OTP memory element.
Abstract:
A method includes forming at least a portion of a semiconductor device in a processing chamber containing oxygen and removing substantially all of the oxygen from the processing chamber. The method further includes forming remaining portions of the semiconductor device in the processing chamber without the presence of oxygen.
Abstract:
According to one exemplary embodiment, a method comprises a step of etching a trench in an ILD layer, said trench having sidewalls and a bottom surface. The method further comprises determining a height of the sidewalls of the trench. The method further comprises filling the trench with interconnect metal such the interconnect metal extends above the trench. According to this exemplary embodiment, the method further comprises performing a CMP process to remove a portion of the interconnect metal. In the present invention, the height of the sidewalls of the trench is utilized to control an amount of polishing performed in the CMP process. The remaining portion of interconnect metal in the trench forms an interconnect line, where the thickness of the interconnect line is controlled by utilizing the height of the sidewalls of the trench to control the amount of polishing in the CMP process.
Abstract:
According to one exemplary embodiment, a FET which is situated over a substrate, comprises a channel situated in the substrate. The FET further comprises a first gate dielectric situated over the channel, where the first gate dielectric has a first coefficient of thermal expansion. The FET further comprises a first gate electrode situated over the first gate dielectric, where the first gate electrode has a second coefficient of thermal expansion, and where the second coefficient of thermal expansion is different than the first coefficient of thermal expansion so as to cause an increase in carrier mobility in the FET. The second coefficient of thermal expansion may be greater that the first coefficient of thermal expansion, for example. The increase in carrier mobility may be caused by, for example, a tensile strain created in the channel.
Abstract:
An electronic fuse (“E-fuse”) cell is formed on a semiconductor substrate. The E-fuse cell has a fuse element with a fuse link extending from a first fuse terminal across a thick dielectric structure to a second fuse terminal. The first and second fuse terminals are separated from the semiconductor substrate by a thin dielectric layer.
Abstract:
A memory cell with a logic bit has a first one-time-programmable (“OTP”) memory element providing a first OTP memory element output and a second OTP memory element providing a second OTP memory element output. A logic operator coupled to the first OTP memory element output and to the second OTP memory element output and provides a binary memory output of the memory cell. In a particular embodiment, the first OTP memory element is a different type of OTP memory than the second OTP memory element.
Abstract:
According to one exemplary embodiment, a structure comprises a substrate. The structure further comprises at least one memory cell situated on the substrate. The structure further comprises a first interlayer dielectric layer situated over the at least one memory cell and over the substrate. The structure further comprises an oxide cap layer situated on the first interlayer dielectric layer. According to this exemplary embodiment, the structure further comprises an etch stop layer comprising TCS nitride situated on the oxide cap layer, where the etch stop layer blocks UV radiation. The structure further comprises a second interlayer dielectric layer situated on the etch stop layer. The structure may further comprise a trench situated in the second interlayer dielectric layer and the etch stop layer, where the trench is filled with copper. The structure may further comprise an anti-reflective coating layer situated on the second interlayer dielectric layer.
Abstract:
According to one exemplary embodiment, a method for forming a field-effect transistor on a substrate, where the substrate includes a high-k dielectric layer situated over the substrate and a gate electrode layer situated over the high-k dielectric layer, comprises a step of etching the gate electrode layer and the high-k dielectric layer to form a gate stack, where the gate stack comprises a high-k dielectric segment situated over the substrate and a gate electrode segment situated over the high-k dielectric segment. According to this exemplary embodiment, the method further comprises performing a nitridation process on the gate stack. The nitridation process can be performed by, for example, utilizing a plasma to nitridate sidewalls of the gate stack, where the plasma comprises nitrogen. The nitridation process can cause nitrogen to enter the high-k dielectric segment and form an oxygen diffusion barrier in the high-k dielectric segment, for example.