Abstract:
Methods are provided for producing an alcohol-containing pyrolysis product. Initially, a hydrocarbon feedstock is pyrolyzed in the presence of a catalyst system, the catalyst system comprising a basic metal oxide catalyst and a hydrogenation metal catalyst. A pyrolysis product is produced that contains at least one alcohol. The basic metal oxide catalyst is comprised of at least one metal from Group 2, Group 3 including Lanthanides and Actinides, or Group 4 of the Periodic Table of Elements, and the supported hydrogenation metal catalyst is comprised of at least one metal from Group 6 or Groups 8-10 of the Periodic Table of Elements.
Abstract:
Disclosed herein are catalyst compositions useful in selective decomposition of organic oxygenates. A feed comprising an organic oxygenate may be contacted with a catalyst comprising (a) at least 0.1 wt % of an oxide of an element selected from Group 3 of the Periodic Table of Elements, wherein Group 3 includes the Lanthanide series; (b) at least 0.1 wt % of an oxide of an element selected from Group 6 of the Periodic Table of Elements; and (c) at least 0.1 wt % of an oxide of at least one element selected from Group 4 of the Periodic Table of Elements, wherein the wt % s are based upon the total combined weight of the oxides in (a) through (c) and excludes any other components.
Abstract:
The precursor of a hydroprocessing catalyst is made by impregnating a metal oxide component comprising at least one metal from Group 6 of the Periodic Table and at least one metal from Groups 8-10 of the Periodic Table with an amide formed from a first organic compound containing at least one amine group, and a second organic compound containing at least one carboxylic acid group. Following impregnation heat treatment follows to form in situ generated unsaturation additional to that in the two organic compounds. The catalyst precursor is sulfided to form an active, sulfide hydroprocessing catalyst.
Abstract:
A guard bed or absorber is placed upstream of a transalkylation reactor to avoid deposition of halide and/or halogen species on the catalysts in said reactor.
Abstract:
Described herein is a catalyst precursor composition comprising at least one metal from Group 6 of the Periodic Table of the Elements, at least one metal from Groups 8-10 of the Periodic Table of the Elements, and a reaction product formed from (i) a first organic compound containing at least one amine group and at least 10 carbon atoms or (ii) a second organic compound containing at least one carboxylic acid group and at least 10 carbon atoms, but not both, wherein the reaction product contains additional unsaturated carbon atoms, relative to the first or second organic compound, wherein the metals of the catalyst precursor composition are arranged in a crystal lattice, and wherein the reaction product is not located within the crystal lattice. A process for preparing the catalyst precursor composition is also described, as is sulfiding the catalyst precursor composition to form a hydroprocessing catalyst.
Abstract:
The invention relates to a conversion process of a feedstock, preferably an oxygenated feedstock, into one or more olefin(s), preferably ethylene and/or propylene, in the presence of a molecular sieve catalyst composition that includes a molecular sieve and a Group 3 metal oxide and/or an oxide of a Lanthanide or Actinide series element. The invention is also directed to methods of making and formulating the molecular sieve catalyst composition useful in a conversion process of a feedstock into one or more olefin(s).
Abstract:
In a process for oxidizing alkylaromatic compounds to the corresponding hydroperoxide, an alkylaromatic compound of general formula (I): in which R1 and R2 each independently represents an alkyl group having from 1 to 4 carbon atoms, provided that R1 and R2 may be joined to form a cyclic group having from 4 to 10 carbon atoms, said cyclic group being optionally substituted, and R3 represents hydrogen, one or more alkyl groups having from 1 to 4 carbon atoms or a cyclohexyl group, is contacted with oxygen in the presence of an added catalyst comprising tert-butyl hydroperoxide and in the absence of any other catalyst, to produce a hydroperoxide of general formula (II): in which R1, R2 and R3 have the same meaning as in formula (I). The hydroperoxide may then be converted into a phenol and a ketone of the general formula R1COCH2R2 (III), in which R1 and R2 have the same meaning as in formula (I).
Abstract:
The present invention provides a process for removing an oxygenate impurity selected from aldehyde and/or ketone, from an olefinic product stream. A product stream is contacted with a metal oxide-containing catalyst in the presence of a C1 to C6 alcohol under conditions sufficient to convert the oxygenate impurity to an olefin and/or oxygenate of higher carbon number than the aldehyde and/or ketone. The aldehyde can be C2 to C5 aldehyde and the ketone can be C3 to C6 ketone. The metal oxide-containing catalyst typically comprises an oxide of at least one metal selected from the group consisting of Group 2 metals, Group 3 metals (including Lanthanide and Actinide series metals), and Group 4 metals.
Abstract:
The invention relates to a composition of matter comprising at least one metal from Group 3, at least one metal from Group 4, sulfur and oxygen, particularly useful as a catalyst for ether decomposition to alkanols and alkenes.