摘要:
A bipolar semiconductor device and method are provided. One embodiment provides a bipolar semiconductor device including a first semiconductor region of a first conductivity type having a first doping concentration, a second semiconductor region of a second conductivity type forming a pn-junction with the first semiconductor region, and a plurality of third semiconductor regions of the first conductivity type at least partially arranged in the first semiconductor region and having a doping concentration which is higher than the first doping concentration. Each of the third semiconductor regions is provided with at least one respective junction termination structure.
摘要:
A semiconductor component including a short-circuit structure. One embodiment provides a semiconductor component having a semiconductor body composed of doped semiconductor material. The semiconductor body includes a first zone of a first conduction type and a second zone of a second conduction type, complementary to the first conduction type, the second zone adjoining the first zone. The first zone and the second zone are coupled to an electrically highly conductive layer. A connection zone of the second conduction type is arranged between the second zone and the electrically highly conductive layer.
摘要:
A semiconductor component includes a semiconductor body having a first side and a second side opposite the first side. In the semiconductor body, a dopant region is formed by a dopant composed of an oxygen complex. The dopant region extends over a section L having a length of at least 10 μm along a direction from the first side to the second side. The dopant region has an oxygen concentration in a range of 1×1017 cm−3 to 5×1017 cm−3 over the section L.
摘要:
A semiconductor device includes a trench extending into a drift zone of a semiconductor body from a first surface. The semiconductor device further includes a gate electrode in the trench and a body region adjoining a sidewall of the trench. The semiconductor device further includes a dielectric structure in the trench. The dielectric structure includes a high-k dielectric in a lower part of the trench. The high-k dielectric includes a dielectric constant higher than that of SiO2. An extension of the high-k dielectric in a vertical direction perpendicular to the first surface is limited between a bottom side of the trench and a level where a bottom side of the body region adjoins the sidewall of the trench.
摘要:
A semiconductor device includes a first trench and a second trench extending into a semiconductor body from a surface. A body region of a first conductivity type adjoins a first sidewall of the first trench and a first sidewall of the second trench, the body region including a channel portion adjoining to a source structure and being configured to be controlled in its conductivity by a gate structure. The channel portion is formed at the first sidewall of the second trench and is not formed at the first sidewall of the first trench. An electrically floating semiconductor zone of the first conductivity type adjoins the first trench and has a bottom side located deeper within the semiconductor body than the bottom side of the body region.
摘要:
A semiconductor body comprised of a semiconductor material includes a first monocrystalline region of the semiconductor material having a first lattice constant along a reference direction, a second monocrystalline region of the semiconductor material having a second lattice constant, which is different than the first, along the reference direction, and a third, strained monocrystalline region between the first region and the second region.
摘要:
A method for producing a buried n-doped semiconductor zone in a semiconductor body. In one embodiment, the method includes producing an oxygen concentration at least in the region to be doped in the semiconductor body. The semiconductor body is irradiated via one side with nondoping particles for producing defects in the region to be doped. A thermal process is carried out. The invention additionally relates to a semiconductor component with a field stop zone.
摘要:
A semiconductor element includes a semiconductor layer having a first doping density, a metallization, and a contact area located between the semiconductor layer and the metallization. The contact area includes at least one first semiconductor area that has a second doping density higher than the first doping density, and at least one second semiconductor area in the semiconductor layer. The second semiconductor area is in contact with the metallization and provides lower ohmic resistance to the metallization than a direct contact between the semiconductor layer and the metallization provides or would provide.
摘要:
Bipolar power semiconductor component comprising a p-type emitter and more highly doped zones in the p-type emitter, and production method. The invention relates to a bipolar power semiconductor component comprising a semiconductor body (1), in which a p-doped emitter (8), an n-doped base (7), a p-doped base (6) and an n-doped main emitter (5) are arranged successively in a vertical direction (v). The p-doped emitter (8) has a number of heavily p-doped zones (82) having a locally increased p-type doping.
摘要:
A method for manufacturing a semiconductor device by laser annealing. One embodiment provides a semiconductor substrate having a first surface and a second surface. The second surface is arranged opposite to the first surface. A first dopant is introduced into the semiconductor substrate at the second surface such that its peak doping concentration in the semiconductor substrate is located at a first depth with respect to the second surface. A second dopant is introduced into the semiconductor surface at the second surface such that its peak doping concentration in the semiconductor substrate is located at a second depth with respect to the second surface, wherein the first depth is larger than the second depth. At least a first laser anneal is performed by directing at least one laser beam pulse onto the second surface to melt the semiconductor substrate, at least in sections, at the second surface.