摘要:
A wire management method using a wire manager including current sensing features provides input for power measurement and management systems. The wire manager may be a single wire or single bundle retaining device with a current sensor such as a hall effect sensor integrated therein, or may be a multi-wire management housing with multiple current sensing devices disposed inside for measuring the current through multiple wires. The wires may be multiple branch circuits in a power distribution panel or raceway, and the wire manager may be adapted for mounting in such a panel or raceway. Voltage sensing may also be incorporated within the sensors by providing an electrically conductive plate, wire or other element that capacitively couples to the corresponding wire.
摘要:
A coil inductor and buck voltage regulator incorporating the coil inductor are provided which can be fabricated on a microelectronic element such as a semiconductor chip, or on an interconnection element such as a semiconductor, glass or ceramic interposer element. When energized, the coil inductor has magnetic flux extending in a direction parallel to first and second opposed surfaces of the microelectronic or interconnection element, and whose peak magnetic flux is disposed between the first and second surfaces. In one example, the coil inductor can be formed by first conductive lines extending along the first surface of the microelectronic or interconnection element, second conductive lines extending along the second surface of the microelectronic or interconnection element, and a plurality of conductive vias, e.g., through silicon vias, extending in direction of a thickness of the microelectronic or interconnection element. A method of making the coil inductor is also provided.
摘要:
A pulsed ring oscillator circuit for storage cell read timing evaluation provides read strength information. A pulse generator is coupled to a bitline to which the storage cell to be measured is connected. The storage cell thereby forms part of the ring oscillator and the read strength of the storage cell is reflected in the frequency of oscillation. A pulse regeneration circuit is included in the ring so that the storage cell read loading does not cause the oscillation to decay. Alternatively, a counter may be used to count the number of oscillations until the oscillations decay, which also yields a measure of the read strength of the storage cell. The pulse generator may have variable output current, and the current varied to determine a change in current with the storage cell enabled and disabled that produces the same oscillation frequency. The read current is the difference between currents.
摘要:
A circular edge detector on an integrated circuit including a plurality of edge detector cells, each of the plurality of edge detector cells having an input select block operable to receive a data signal and a previous cell signal and to generate a present cell signal, and a state capture block operably connected to receive the present cell signal. The present cell signal of each of the plurality of edge detector cells is provided to a next of the plurality of edge detector cells as the previous cell signal for the next of the plurality of edge detector cells, and the present cell signal from a last edge detector cell is provided to a first edge detector cell as the previous cell signal for the first edge detector cell.
摘要:
A circuit for dynamically monitoring the operation of an integrated circuit under differing temperature, frequency, and voltage (including localized noise and droop), and for detecting early life wear-out mechanisms (e.g., NBTI, hot electrons).
摘要:
A pseudo Set/Reset latch circuit is configured with modified NOR or NAND gates wherein one of the series pull-up devices or pull-down devices is removed. A minimum of three pseudo Set/Reset latches may be coupled as a ring oscillator generating an output and a non-skewed complementary output. Additionally, feed-forward inverting stages may be coupled in parallel with inverting paths in the ring oscillator primary path to further increase the frequency range of the ring oscillator. The pseudo Set/Reset latch circuits and the feed-forward inverting stages may be configured with voltage controlled devices that alter the delay of the stages as a means for varying the frequency of the ring oscillator either by varying the current drive of the circuitry driving the output of the latch stages or by varying the conductance of devices coupling between the latch stages. Feedforward inverting stages may comprise pseudo latches or inverter gates.
摘要:
A reference signal and a voltage controlled oscillator (VCO) output are compared for relative phase and frequency differences. A lead error signal is generated if the reference signal leads the VCO output and a lag error signal is generated if the reference signal lags the VCO output the lead and lag error may result from a combination for phase and frequency differences between the reference signal and the VCO output. A time window is used to sample the polarity of the lead and lag error signals by incrementing and decrementing a phase error signal. If the phase error signal reaches a threshold value within the time window, a Reset Delta pulse is generated and if the phase error signals does not reach the maximum delta value within the time window a Reset Total pulse is generated. A variable first gain signal is increased on each Reset Delta pulse and decreased on each Reset Total pulse and limited to a value between predetermined maximum and minimum values. The first gain signal is multiplied by a Pump current increment and added to a minimum Pump current to generate a variable Pump current. A variable second gain signal proportional to the time the reference signal leads and lags the VCO signal multiplies the Pump current. The amplified Pump current is summed with an integral of the amplified Pump current to generate a control signal. The control signal is applied to the VCO and determines the frequency of the VCO output.
摘要:
An I/O driver comprising: a circuit adapted to be powered by a first power supply. The circuit is adapted to receive a first signal referenced to the voltage of a second power supply and is adapted to convert the first signal to a second signal of the same logical value as the first signal and referenced to the voltage of the first power supply. The circuit is adapted to maintain the second signal on an output of the I/O driver when the second power supply is powered off.
摘要:
A charge pump has two charge pump nodes. The first charge pump node has a first current source (CS) with a source terminal connected to a positive supply voltage and an output terminal connected to the first charge pump node with a P channel metal oxide silicon transistor (PFET) controlled by a first control signal. The first charge pump node is also connected to a second CS with a source terminal connected to the ground supply voltage and an output terminal connected to the second CS with an NFET controlled by a second control signal. The second charge pump node has a third CS with a source terminal connected to the positive supply voltage and an output terminal connected to the second charge pump node with a PFET controlled by a third control signal. The second charge pump node is also connected to a fourth CS with a source terminal connected to the ground supply voltage and an output terminal connected to the second CS with an NFET controlled by a fourth control signal. A first bi-directional transfer gate is coupled between the output nodes of the first and third CSs and is controlled by a Mode control signal and a second bi-directional transfer gate is coupled between the output nodes of the second and fourth CSs and is also controlled by the Mode control signal. States of the control signals allow a dual mode where either a first or second current level may be delivered into or out of components coupled to the first and second charge pump nodes.
摘要:
A phase locked loop (PLL) circuit uses a programmable frequency divider (PRFD) to generate a feedback clock from the PLL output clock. The PLL power supply voltage and a PLL reference current are generated by regulating the scalable logic supply voltage of the system in using regulator circuits. The PLL power supply voltage is regulated to a level lower than the lowest level of the scalable logic supply voltage used by the system. The PLL generates a PLL output clock whose frequency is higher than the highest frequency of operation of the system using the highest level of the scalable logic power supply voltage. The PLL output clock is divided is a second PRFD to generate a divided PLL clock. The PLL clock and a fixed auxiliary clock are selected in a glitch-free multiplexer (MUX) as the system clock for the system. The system clock frequency may be dynamically scaled by programming the divisor in the second PRFD dividing the PLL clock. If any of the scaling dynamics may affect the system clock, then the fixed frequency clock may be selected as the system clock until any transients have stabilized. The MUX may also stop the system in a known logic state. The PLL may also be optimized while the system is running.