Abstract:
A method for determining an offset between a center of a substrate and a center of a depression in a chuck includes providing a test substrate to the depression, the test substrate having a dimension smaller than a dimension of the depression, measuring a position of an alignment mark of the test substrate while in the depression, and determining the offset between the center of the substrate and the center of the depression from the position of the alignment mark.
Abstract:
In an off-axis levelling procedure a height map of the substrate is generated at a measurement station. The height map is referenced to a physical reference surface of the substrate table. The physical reference surface may be a surface in which is inset a transmission image sensor. At the exposure station the height of the physical reference surface is measured and related to the focal plane of the projection lens. The height map can then be used to determine the optimum height and/or tilt of substrate table to position the exposure area on the substrate in best focus during exposure. The same principles can be applied to (reflective) masks.
Abstract:
A method for determining an offset between a center of a substrate and a center of a depression in a chuck includes providing a test substrate to the depression, the test substrate having a dimension smaller than a dimension of the depression, measuring a position of an alignment mark of the test substrate while in the depression, and determining the offset between the center of the substrate and the center of the depression from the position of the alignment mark.
Abstract:
In an off-axis leveling procedure a height map of a mask is generated at a measurement station. The height map is referenced to a physical reference surface of a mask support. The physical reference surface may be a surface in which is inset a transmission image sensor. At the exposure station the height of the physical reference surface is measured and related to the focal plane of the projection lens. The height map can then be used to determine the optimum height and/or tilt of the mask support to position the exposure area on the mask in best focus during exposure.
Abstract:
A method of exposing a substrate (e.g. in a lithographic apparatus comprising a substrate table to support a substrate) according to one embodiment of the invention includes performing first and a second height measurement of a part of at least one substrate with a first and second sensor, generating and storing an offset error map based on a difference between the measurements; generating and storing a height map of portions of the substrate (or another substrate that has had a similar processing as the part) by performing height measurements with the first sensor and correcting this height map by means of the offset error map; and exposing the substrate (or the other substrate).
Abstract:
A lithographic apparatus includes a measurement system including at least one optical component and at least one electrical component. The electrical component is configured to dissipate heat. The optical component is mounted on a first frame of the apparatus, and the electrical component is mounted on a second frame of the apparatus that is thermally and mechanically decoupled from the first frame. An optical coupling is provided between the first frame and the second frame.
Abstract:
A method for determining an offset between a center of a substrate and a center of a depression in a chuck includes providing a test substrate to the depression, the test substrate having a dimension smaller than a dimension of the depression, measuring a position of an alignment mark of the test substrate while in the depression, and determining the offset between the center of the substrate and the center of the depression from the position of the alignment mark.
Abstract:
A method for determining an offset between a center of a substrate and a center of a depression in a chuck includes providing a test substrate to the depression, the test substrate having a dimension smaller than a dimension of the depression, measuring a position of an alignment mark of the test substrate while in the depression, and determining the offset between the center of the substrate and the center of the depression from the position of the alignment mark.
Abstract:
In an off-axis levelling procedure a height map of the substrate is generated at a measurement station. The height map is referenced to a physical reference surface of the substrate table. The physical reference surface may be a surface in which is inset a transmission image sensor. At the exposure station the height of the physical reference surface is measured and related to the focal plane of the projection lens. The height map can then be used to determine the optimum height and/or tilt of substrate table to position the exposure area on the substrate in best focus during exposure. The same principles can be applied to (reflective) masks.
Abstract:
A lithographic projection apparatus according to an embodiment of the invention includes a measurement system configured to determine a position of a target portion of a substrate, using at least one among an optical sensing operation and an optical detecting operation. The position is determined via an optical path that includes at least one catoptrical system arranged to have an imaging function of at least one dioptrical element.