Abstract:
A configuration of multiple LED modules comprising a plurality of LED modules that each contain a carrier that has a first main area, a second main area and at least one semiconductor layer, wherein the first main area has a planar configuration. The LED modules also include a plurality of LED semiconductor bodies that applied on the first main area of the carrier. In addition, the multiple LED modules include a common heat sink, where the carrier of the LED modules in each case are connected to the common heat sink on the second main area.
Abstract:
The invention relates to an optoelectronic component, having a semiconductor chip (1) which is mounted on a flexible chip support (6), in which conductor tracks (3, 5) for electrically connecting the semiconductor chip (1) are embodied on a first main face, and on which a housing frame (7) is disposed that is filled with a radiation-permeable medium, in particular a filler compound. A display device, an illumination or backlighting device, and a method for producing components of the invention are also disclosed.
Abstract:
A housing for an optoelectronic component which includes a carrier with a chip mounting surface is disclosed. An optical element which is produced separately from the carrier is applied to the carrier. The chip mounting surface and the optical element define a parting plane, the parting plane between carrier and optical element being arranged in the plane of the chip mounting surface. Also disclosed is an optoelectronic component having a housing of this type and a method for producing an optoelectronic component of this type.
Abstract:
A device (1) with a number of light emitting diode chips (5) in a reflector (3) is formed in such a way that the direct line of sight between the light emitting diode chips (5) is interrupted by a partition (11). This improves the efficiency of the device (1) substantially.
Abstract:
A method for producing a lens mold suitable for manufacturing a field of micro-lenses is disclosed. The method includes the step of molding the lens mold from a sheaf of closely-packed balls held by a hexagonal mounting.
Abstract:
A lighting device is disclosed comprising a plurality of semiconductor light sources disposed on a carrier, wherein the light from the light sources is coupled into assigned lightguides at a set angle to the surface normals of the carrier and the lightguides are provided with reflecting and light exit faces such that the envelope of the light outcoupling faces forms a curved surface segment.
Abstract:
A radiation-emitting or -receiving semiconductor chip 9 is soft-soldered for mounting on a leadframe 2 over which a prefabricated plastic encapsulant 5, a so-called premolded package, is injection-molded. Through the use of a low-melting solder 3 applied in a layer thickness of less than 10 μm, the soldering process can be carried out largely without thermal damage to the plastic encapsulant 5.
Abstract:
The invention proposes an arrangement of luminescent materials for excitation by means of a radiation source and involving the use of a luminescent material having a Ce-activated garnet structure A3B5O12, in which the first component A contains at least one element from the group consisting of Y, Lu, Se, La, Gd, Sm and Tb and the second component B represents at least one of the elements Al, Ga and In, and a plurality of the luminescent materials are mixed together. An associated wavelength-converting casting compound and an associated light-source arrangement are further proposed.
Abstract:
A housing accommodating a semiconductor chip is set out. The housing and chip may be used for sending and/or receiving radiation. Popular applications of the housing may be in light emitting diodes. The housing includes a conductor strip that is punched into two electrically isolated portions. The housing further includes a cavity extending inwards from the top of the housing. The conductor portions include respective areas that are exposed at the bottom of the cavity. The semiconductor chip is bonded to one of the exposed areas and a wire bonds the chip to the second exposed area. The conductor portions also terminate in exposed electrodes, which allow for electrical connection of the chip with external devices. A window is formed in the cavity and the walls of the housing that form the cavity may be made of a reflective material. The electrodes remain unexposed to the window but for any residual areas about the chip and bonding wire within the first and second exposed areas. By minimizing the area of the conductor exposed to the window, delamination brought about by the different thermal expansions of the window and conductor are minimized and/or eliminated. Likewise, with a reflective housing covering the base of the cavity that accommodates the window, internal radiation reflection is increased over that which was achieved with an exposed conductor.
Abstract:
A light-emitting diode arrangement is disclosed, comprising at least one light-emitting diode (LED) chip with a radiation decoupling surface through which a large portion of the electromagnetic radiation generated in the LED chip exits in a main direction of emission; a housing laterally surrounding the LED chip; and a reflective optic disposed after the radiation decoupling surface in the main direction of emission. The LED arrangement is particularly well suited for use in devices such as camera-equipped cell phones, digital cameras or video cameras.