Abstract:
The present invention relates to a method for removing an organic compound from an aqueous solution, comprising the steps of providing the aqueous solution which contains the organic compound, and a hydrophobic organic solution, where the latter comprises a liquid hydrophobic cation exchanger, contacting the aqueous solution and the hydrophobic organic solution, and separating off the hydrophobic organic solution from the aqueous solution, wherein the liquid hydrophobic cation exchanger is a saturated alkanoic acid having at least one alkyl substituent, where the organic compound is an organic compound having at least one positive charge and a neutral or positive total charge.
Abstract:
A polyamide composition contains the following components: (a) at least 40 parts by weight PA12; (b) 0.1-15 parts by weight of at least one salt with a non-metallic cation; (c) 0.1-25% by weight of at least one dispersant based on esters or amides; (d) a quantity of carbon nanotubes that produces in the molding compound a specific surface resistance according to IEC standard 60167 of maximum 10−1-1010Ω; (e) 0-5 parts by weight of at least one metal salt; and optionally (f) conventional auxiliary substances and additives, the sum of the parts by weight of components (a) to (f) amounting to 100. The polyamide composition can be used for manufacturing moldings with improved electrical conductivity and improved surface quality.
Abstract:
The invention provides a process for reacting a carboxylic acid ester of the formula (I) R1-A-COOR2 (I), wherein R1 is hydrogen, —CH2OH, —CHO, —COOR3, —CH2SH, —CH2OR3 or —CH2NH2, R2 is an alkyl group,R3 is hydrogen or an alkyl group, and A is a substituted, unsubstituted, linear, branched and/or cyclic alkylene, alkenylene, arylene or aralkylene radical having at least 4 carbons,in the presence of a cell. The process comprises a) contacting the cell with said carboxylic acid ester in an aqueous solution,wherein the cell is a recombinant cell which has reduced activity of a polypeptide comprising SEQ ID NO: 2 or a variant thereof over the wild-type cell.
Abstract translation:本发明提供使式(I)R1-A-COOR2(Ⅰ)的羧酸酯与式(Ⅰ)中R1为氢,-CH2OH,-CHO,-COOR3,-CH2SH,-CH2OR3或-CH2NH2,R2 在烷基存在下,R 3是氢或烷基,A是具有至少4个碳的取代的,未被取代的,直链的,支链的和/或环状的亚烷基,亚烯基,亚芳基或亚芳基。 该方法包括a)使细胞与所述羧酸酯在水溶液中接触,其中所述细胞是包含SEQ ID NO:2或其变体的多肽在野生型细胞上的活性降低的重组细胞。
Abstract:
The invention relates to a method for removing an organic compound having one or more positive charges from an aqueous solution. Said method consists of the following steps a) the aqueous solution containing the organic compound, and a hydrophobic organic solution which contains a hydrophobic liquid cation exchanger having one or more negative charges and a negative total charge, are provided, b) the aqueous solution and the organic solution are brought into contact with each other and c) the organic solution is separated from the aqueous solution.
Abstract:
The invention provides a method to produce primary diamines by catalytic conversion of diols having a linear main chain of from 4 to 31 carbon atoms into the corresponding diamines. The reaction is conducted in a liquid or supercritical phase and is catalyzed by a homogeneous ruthenium-containing complex. The primary diamines obtained may be suitable for polyamide syntheses.
Abstract:
A method for coating of a metallic article is provided. According to the method, the metal surface is coated with a composition which comprises a polymer or comprises a two-component system that reacts to form a polymer following application to the metal surface. The composition comprises 70-2700 meq/kg olefinic double bonds which leads to stronger adhesion and to increased corrosion resistance.
Abstract:
A multilayer film containing layers of polyamide and polyester, suitable as a back cover for a photovoltaic module is provided. The film comprises, in the order listed: a) a layer which comprises at least 35% by weight of polyamide; c) a layer which comprises at least 35% by weight, of a thermoplastic polyester; and e) a layer which comprises at least 35% by weightof polyamide; wherein the layers a) and e) further comprise 0.1 to 60% by weight, of a polyamine-polyamide graft copolymer, or the layer c) further comprises 0.1 to 30% by weight of polyamine-polyamide graft copolymer. The polyamine-polyamide graft copolymer comprises as copolymerized monomers: a polyamine having at least 4 nitrogen atoms and at least one polyamide-forming unit selected from the group consisting of a lactam, an ω-aminocarboxylic acid and an equimolar combinations of a diamine and a dicarboxylic acid. In another embodiment, adhesion promoting layers are placed between the layers.
Abstract:
A multilayer composite which has improved adhesion between the layers, with the following layers: I. an inner layer I selected from among a fluoropolymer molding composition and a polyolefin molding composition; II. a bonding layer II which has the following composition: a) from 2 to 80 parts by weight of a polyamine-polyamide graft copolymer, b) from 0 to 85 parts by weight of a polyester, c) from 0 to 85 parts by weight of a polymer selected from among polyamides, fluoropolymers and polyolefins, where the sum of the parts by weight of a), b) and c) is 100; d) not more than 50 parts by weight of additives; III. a layer III of a polyester molding composition.
Abstract:
The invention relates to a method for producing α/β-unsaturated dicarboxylic acids and the corresponding saturated dicarboxylic acids, whereby the corresponding cycloalkene and acrylic acid are reacted with a ruthenium catalyst by way of a metathesis reaction at high substrate concentrations until the reaction takes place in substance, the resulting dicarboxylic acid being precipitated.
Abstract:
A good layer adhesion can be achieved in a composite having two or more layers wherein a layer I is obtained from a molding composition which has the following components: a) from 0 to 80 parts by weight of a polyamide selected from the group consisting of PA6, PA66, PA6/66 and a mixture thereof; b) from 0.05 to 100 parts by weight of a polyamine-polyamide copolymer; and c) from 0 to 80 parts by weight of a polyamide selected from the group consisting of PA11, PA12, PA612, PA1012, PA1212 and a mixture thereof; wherein a total of the parts by weight of components a), b) and c) is 100; wherein at least 20 parts by weight of components a) and b) is a monomer unit which is obtained from caprolactam and/or from a combination of hexamethylenediamine/adipic acid; and wherein at least 20 parts by weight of components b) and c) is a monomer unit which is obtained from &ohgr;-aminoundecanoic acid, laurolactam, a mixture of hexamethylenediamine and 1,12-dodecanedioic acid, a mixture of 1,10-decanediamine and 1,12-dodecanedioic acid, and/or a mixture of 1,12-dodecanediamine and 1,12-dodecanedioic acid.