摘要:
A suction drain device of a disclosed liquid collecting apparatus actively pushes and pulls blood. This achieves liquid collection at high speed even under decreased pressure depending on a physiological state of an animal. Moreover, the liquid collecting apparatus includes a First flow path and a second flow path having a given length. Accordingly, the flow path with a given length set in advance and thus a known volume allows collection of a given amount volume of blood without measuring a length and an amount of blood using a volume measuring device. Accordingly, no need of the measuring device allows reduction in size of the liquid collecting apparatus. Consequently, the liquid collecting apparatus can be installed adjacent to the animal to achieve reduction in dead volume. Moreover, blood is flown to a fourth flow path branched with a connecting terminal, and is also flown to the second flow path branched with a connecting terminal. The blood flown in the second flow path is collected at the highest priority. This obtains collection of fresh blood from a collecting source as a blood supply source.
摘要:
Problems encountered in the conventional inspection method and the conventional apparatus adopting the method are solved by the present invention using an electron beam by providing a novel inspection method and an inspection apparatus adopting the novel method which are capable of increasing the speed to scan a specimen such as a semiconductor wafer.The inspection novel method provided by the present invention comprises the steps of: generating an electron beam; converging the generated electron beam on a specimen by using an objective lens; scanning the specimen by using the converged electron beam; continuously moving the specimen during scanning; detecting charged particles emanating from the specimen at a location between the specimen and the objective lens and converting the detected charged particles into an electrical signal; storing picture information conveyed by the electrical signal; comparing a picture with another by using the stored picture information; and detecting a defect of the specimen.
摘要:
An object of the invention is to provide an inspection device which has a function of preventing electric discharge so that an absorbed current is detected more efficiently.In the invention, absorbed current detectors are mounted in a vacuum specimen chamber and capacitance of a signal wire from each probe to corresponding one of the absorbed current detectors is reduced to the order of pF so that even an absorbed current signal with a high frequency of tens of kHz or higher can be detected. Moreover, signal selectors are operated by a signal selection controller so that signal lines of a semiconductor parameters analyzer are electrically connected to the probes brought into contact with a sample. Accordingly, electrical characteristics of the sample can be measured without limitation of signal paths connected to the probes to transmission of an absorbed current. In addition, a resistance for slow leakage of electric charge is provided in each probe stage or a sample stage.
摘要:
An image forming method using an image forming apparatus including: a latent image carrier whose surface is driven in a sub scanning direction; a deflector which scans a beam spot reciprocally in a main scanning direction substantially perpendicular to the sub scanning direction on the surface of the latent image carrier in the use of an oscillating deflect mirror so as to form spot latent images each of which formed on a pixel; developer which develops each of the spot latent images as a pixel-dot, the method includes of: halftoning for a tone reproduction in which a halftone-dot constituted by the pixel-dot(s) is formed on a cell consisting plural pixels according to a fattening type threshold matrix, wherein a plurality of cells are contiguously arranged in the main scanning direction so as to form a plurality of contiguous locations at each of which the cells adjoin mutually in the main scanning direction, each cell includes a larger-than-four even number of pixels in the sub scanning direction, and the cells, which mutually adjoin at a particular contiguous location out of the plurality of contiguous locations, are mutually shifted by an odd number of pixel(s) in the sub scanning direction.
摘要:
A light source apparatus emits light image information. A reflective layer is formed on a planarization film formed on a metal substrate. LED thin films are arranged in a matrix having columns extending in first directions and rows extending in second directions perpendicular to the first directions, the LED thin films being bonded to the reflective layer by means of intermolecular force. First wires are connected to first electrodes of the LED thin films. Second wires are connected to second electrodes of the LED thin films. A first driver circuit selectively electrically drives the LED thin films, arranged in the rows, via the plurality of first wires. A second driver circuit selectively electrically drives the LED thin films, arranged in the rows, via the plurality of second wires.
摘要:
An image forming apparatus includes: a latent image carrier; an exposure unit which forms a latent image on the latent image carrier; a developing unit which develops the latent image formed on the latent image carrier by the exposure unit using liquid developer; a squeeze roller which contacts the latent image carrier, and applies bias voltage to the latent image carrier after development by the developing unit; an electrification reducing light source which supplies light to the latent image carrier to which bias is applied by the squeeze roller; a transfer member which contacts the latent image carrier and receives the image transferred from the latent image carrier; and a reflection preventing member disposed between the transfer member and the electrification reducing light source.
摘要:
An image forming apparatus according to the present invention includes an image carrier, a charging section that electrically charges the image carrier, an exposure section that exposes the image carrier to light to form a latent image, a development section that develops the latent image by means of a liquid developer containing carrier and toner particles, a first squeezing roller that is held in contact with the image carrier carrying an image developed by the development section and adapted to bear a bias voltage Vs1 applied thereto, a second squeezing roller that is held in contact with the image carrier squeezed by the first squeezing roller and adapted to bear a bias voltage Vs2 applied thereto, and a transfer member that is held in contact with the image carrier squeezed by the second squeezing roller and adapted to receive the image transferred thereto, the absolute value of the bias voltage Vs1 and the absolute value of the bias voltage Vs2 showing a relationship of |Vs1|>|Vs2|.
摘要翻译:根据本发明的图像形成装置包括图像载体,对图像载体进行电荷的充电部,将图像载体曝光以形成潜像的曝光部,通过装置显影潜像的显影部 包含载体和调色剂颗粒的液体显影剂,第一挤压辊,其保持与承载由显影部分显影的图像的图像载体接触并适于承受施加到其上的偏置电压Vs1;第二挤压辊,保持在 与由第一挤压辊挤压的图像载体接触并适于承受施加到其上的偏置电压Vs2;以及传送构件,其保持与由第二挤压辊挤压的图像载体接触并适于接收转印到其上的图像, 偏置电压Vs1的绝对值和偏置电压Vs2的绝对值表示| Vs1 |> | Vs 2 |。
摘要:
An image forming apparatus, includes: a latent image carrier whose surface includes an effective image region spanning across a predetermined width in a main scanning direction and is driven in a sub scanning direction approximately orthogonal to the main scanning direction; a latent image former which has a light source and a deflection mirror oscillating, and deflects a light beam from the light source using the deflection mirror so as to scan the effective image region with the deflected light beam; and a scanning mode controller which switches selectively between a single-side scanning mode and a double-side scanning mode, the single-side scanning mode being a mode in which the light beam is scanned only in a first direction included in the main scanning direction, the double-side scanning mode being a mode in which the light beam is scanned in both the first direction and a second direction opposite to the first direction, wherein a condition to form latent images on the latent image carrier in the single-side scanning mode is different from a condition to form latent images on the latent image carrier in the double-side scanning mode.
摘要:
An image forming apparatus, includes: a latent image carrier whose surface includes an effective image region spanning across a predetermined width in a main scanning direction and is driven in a sub scanning direction approximately orthogonal to the main scanning direction; a latent image former which has a light source and a deflection mirror oscillating, and deflects a light beam from the light source using the deflection mirror so as to scan the effective image region with the deflected light beam; and a scanning mode controller which switches selectively between a single-side scanning mode and a double-side scanning mode, the single-side scanning mode being a mode in which the light beam is scanned only in a first direction included in the main scanning direction, the double-side scanning mode being a mode in which the light beam is scanned in both the first direction and a second direction opposite to the first direction, wherein a condition to form latent images on the latent image carrier in the single-side scanning mode is different from a condition to form latent images on the latent image carrier in the double-side scanning mode.
摘要:
Problems encountered in the conventional inspection method and the conventional apparatus adopting the method are solved by the present invention using an electron beam by providing a novel inspection method and an inspection apparatus adopting the novel method which are capable of increasing the speed to scan a specimen such as a semiconductor wafer.The inspection novel method provided by the present invention comprises the steps of: generating an electron beam; converging the generated electron beam on a specimen by using an objective lens; scanning the specimen by using the converged electron beam; continuously moving the specimen during scanning; detecting charged particles emanating from the specimen at a location between the specimen and the objective lens and converting the detected charged particles into an electrical signal; storing picture information conveyed by the electrical signal; comparing a picture with another by using the stored picture information; and detecting a defect of the specimen.