Abstract:
Disclosed are a printed circuit board and a method for manufacturing the same. The printed circuit board includes a core insulating layer, at least one via formed through the core insulating layer, an inner circuit layer buried in the core insulating layer, and an outer circuit layer on a top surface or a bottom surface of the core insulating layer, wherein the via includes a first part, a second part below the first part, a third part between the first and second parts, and at least one barrier layer including a metal different from a metal of the first to third parts. The inner circuit layer and the via are simultaneously formed so that the process steps are reduced. Since odd circuit layers are provided, the printed circuit board has a light and slim structure.
Abstract:
The present invention relates to a multi-row leadframe for semiconductor packaging, characterized by: forming a plating pattern on a leadframe material (first step); forming a protective pattern on the plating pattern (second step); and forming a nano pattern by using the protective pattern as a mask (third step), whereby a protective pattern is formed on an upper surface of a plating pattern to increase reliability of a product by preventing damage to a plating layer caused by etching solution during pattern formation of leadframe and to thereby solve the problem of using the plating layer as an etching mask.
Abstract:
An air conditioning system, comprising: a channel to carry a flow of refrigerant, and a first noise reducer to change at least one property of the refrigerant as the refrigerant flows through the channel.
Abstract:
An air-conditioning system and a controlling method for the same that is capable of improving the operational efficiency of the air-conditioning system are disclosed. The air-conditioning system includes a phase separator (500) for separating a flowing refrigerant into a gas-phase refrigerant and a liquid-phase refrigerant, an evaporator (600) for evaporating the liquid-phase refrigerant separated by the phase separator (500), a compressor (100) having a first compression part into which the refrigerant having passed through the evaporator (600) is introduced and a second compression part into which both the gas-phase refrigerant separated by the phase separator (500) and the refrigerant having passed through the first compression part are introduced, and a control unit for simultaneously or selectively controlling the amount of the refrigerant introduced into the phase separator (500) and the amount of the refrigerant discharged from the phase separator (500).
Abstract:
The present invention relates to a controlling method of an air conditioner. The controlling method of an air conditioner having a phase separator, an expansion valve, a control valve, an evaporator, a multistage compressor, and a condenser, includes the steps of sensing an order to operate the air conditioner, stabilizing the air conditioner, setting a degree of superheat of refrigerant in the air conditioner, and setting an optimum intermediate pressure of the refrigerant of the air conditioner.
Abstract:
Disclosed are a printed circuit board and a method for manufacturing the same. The printed circuit board includes a core insulating layer, at least one via formed through the core insulating layer, an inner circuit layer buried in the core insulating layer, and an outer circuit layer on a top surface or a bottom surface of the core insulating layer. The via includes a first part, a second part below the first part, and a third part between the first and second parts, and the third part includes a metal different from a metal of the first and second parts. The inner circuit layer and the via are simultaneously formed.
Abstract:
An air conditioning system includes a phase separator separating a gaseous refrigerant and a liquid refrigerant from a flowing refrigerant, an evaporator evaporating the liquid refrigerant separated by the phase separator, and at least one compressor including a first compressing part receiving the refrigerant via the evaporator and a second compressing part receiving both of the gaseous refrigerant separated by the phase separator and the refrigerant via the first compressing part.
Abstract:
Disclosed are a printed circuit board and a method for manufacturing the same. The printed circuit board includes a core insulating layer, at least one via formed through the core insulating layer, an inner circuit layer buried in the core insulating layer, and an outer circuit layer on a top surface or a bottom surface of the core insulating layer, wherein the via includes a center part having a first width and a contact part having a second width, the contact part makes contact with a surface of the core insulating layer, and the first width is larger than the second width. The inner circuit layer and the via are simultaneously formed so that the process steps are reduced. Since odd circuit layers are provided, the printed circuit board has a light and slim structure.
Abstract:
A fabric treating machine according to the present invention comprises a connector which is disposed at an outer tub and is connected to a driving part which is disposed at either the center or the off-center position of the connector optionally. Therefore, not only the direct driving motor but the indirect driving motor can be disposed without change of the outer tub and the connector. Because the common use of the outer tub is possible regardless of the connecting method of the driving part, there are the advantages that the cost is reduced and productivity and assembly are improved.
Abstract:
Provided is a radiant heat circuit board for mounting a plurality of heat generating devices. The radiant heat circuit board includes a metal plate including an integrated metal projection to which the plurality of heat generating devices are attached, an insulation layer exposing the integrated metal projection, the insulation layer being disposed on the metal plate, and a plurality of electrode pads disposed on the insulation layer, the plurality of electrode pads applying a voltage into each of the heat generating devices. Thus, a radiant projection may be disposed between the heat generating devices to improve heat radiation.