Abstract:
An organic electroluminescent display device includes a first substrate including a display region including a plurality of pixel regions; a first electrode in each pixel region; an organic light emitting layer on the first electrode; a second electrode on the organic light emitting layer and in the display region, wherein the second electrode includes a first metal material having a first wt %, a first work function, and a first sheet resistance, and a second metal material having a second wt % less than the first wt %, a second work function less than the first work function, and a second sheet resistance greater than the first sheet resistance.
Abstract:
A fuel cell stack includes: a plurality of membrane-electrode assemblies; first and second end plates respectively positioned outside outermost ones of the membrane-electrode assemblies; and a plurality of separators respectively positioned between the membrane-electrode assemblies and between the outermost ones of the membrane-electrode assemblies and the first and second end plates. The first end plate includes an oxidizing agent inlet, an oxidizing agent outlet, and a moisture supplying flow path connecting the oxidizing agent inlet and the oxidizing agent outlet. The moisture supplying flow path includes a first end portion adjacent to the oxidizing agent outlet and a second end portion adjacent to the oxidizing agent inlet, the first end portion being larger than the second end portion and being a different distance away from a surface of the first end plate facing away from the second end plate than the second end portion.
Abstract:
The present invention provides methods for identifying the plurality of aptamers that bind to different sites of a target molecule and methods for using the same, for example, in sandwich assays. In particular, the plurality of aptamers binding to different sites of the target molecules is identified from a library of aptamers identified from the same SELEX process.
Abstract:
A shift register is disclosed. In one aspect, the shift register has a plurality of stages dependently coupled to an input line of a start pulse and is driven by first, second and third clock signals respectively input to first, second and third input lines. The shift register includes first and second voltage stabilizer circuits to prevent leakage currents.
Abstract:
A control message transmitting/receiving method in an MBMS-supporting mobile communication system. In the present invention, an RNC periodically transmits control messages related to MBMS RB setup to UEs. Thus, although a UE initially fails to receive an intended MBMS service, it can set up an MBMS RB by receiving a related retransmitted control message. Also, the RNC periodically provides information about ongoing MBMS services on a cell basis so that a UE can decide whether its requested MBMS service is in progress and request information required to set up an MBMS RB for the MBMS service to the RNC by individual signaling.
Abstract:
In a stacked chip configuration, and manufacturing methods thereof, the gap between a lower and an upper chip is filled completely using a relatively simple process that eliminates voids between the lower and upper chips and the cracking and delamination problems associated with such voids. The present invention is applicable to both chip-level bonding and wafer-level bonding approaches. A photosensitive polymer layer is applied to a first chip, or wafer, prior to stacking the chips or stacking the wafers. The photosensitive polymer layer is partially cured, so that the photosensitive polymer layer is made to be structurally stable, while retaining its adhesive properties. The second chip, or wafer, is stacked, aligned, and bonded to the first chip, or wafer, and the photosensitive polymer layer is then cured to fully bond the first and second chips, or wafers. In this manner, adhesion between chips/wafers is greatly improved, while providing complete gap fill. In addition, mechanical reliability is improved, alleviating the problems associated with cracking and delamination, and leading to an improvement in device yield and device reliability.
Abstract:
An image sensor device and methods thereof. In an example method, a protective layer may be formed over at least one microlens. An adhesive layer may be formed over the protective layer. The adhesive layer may be removed so as to expose the protective layer. The protective layer may be removed so as to expose the at least one microlens, the exposed at least one microlens not including residue from the adhesive layer. The at least one microlens may have an improved functionality due at least in part to the lack of residue from the adhesive layer. In an example, the at least one microlens may be included in an image sensor module.
Abstract:
A composition for forming silica-based insulation layer includes a hydrogenated polysiloxazane including a moiety represented by the following Chemical Formula 1 and a moiety represented by the following Chemical Formula 2, and having a chlorine concentration of about 1 ppm or less:
Abstract:
A pixel circuit and an organic light emitting display using the pixel circuit are disclosed. The pixel circuit compensates for variation of the threshold voltage of a driving transistor and for variation in the power supply to the pixel.
Abstract:
The present invention provides methods for identifying the plurality of aptamers that bind to different sites of a target molecule and methods for using the same, for example, in sandwich assays. In particular, the plurality of aptamers binding to different sites of the target molecules is identified from a library of aptamers identified from the same SELEX process.