Abstract:
At least one embodiment relates to an autofocus method for determining a focal plane for at least one object. The method includes reconstructing a holographic image of the at least one object such as to provide a reconstructed image at a plurality of different focal depths. The reconstructed image includes a real component and an imaginary component. The method also include performing a first edge detection on the real component for at least two depths of the plurality of different focal depths and a second edge detection on the imaginary component for the at least two depths. Further, the method includes obtaining a first measure of clarity for each of the at least two depths based on a first measure of statistical dispersion with respect to the first edge detection and a second measure of clarity.
Abstract:
LED chip packaging assembly that facilitates an integrated method for mounting LED chips as a group to be pre-wired to be electrically connected to each other through a pattern of extendable metal wiring lines is provided. LED chips which are electrically connected to each other through extendable metal wiring lines, replace pick and place mounting and the wire bonding processes of the LED chips, respectively. Wafer level MEMS technology is utilized to form parallel wiring lines suspended and connected to various contact pads. Bonding wires connecting the LED chips are made into horizontally arranged extendable metal wiring lines which can be in a spring shape, and allowing for expanding and contracting of the distance between the connected LED chips. A tape is further provided to be bonded to the LED chips, and extended in size to enlarge distance between the LED chips to exceed the one or more prearranged distances.
Abstract:
The present disclosure is directed to an apparatus and method of batch assembly. The apparatus for batch assembly may include a plurality of spring units, a plurality of handling units, and a control unit. The method of batch assembly may include aligning an array of devices with a plurality of handling units, attaching the array of devices onto the handling units, expanding the handling units so as to expand the array of devices from a first area to a second area, and transferring the array of devices to a destination.
Abstract:
A smart packaging system and a smart display system and methods relating thereto are disclosed herein. In various embodiments, the packaging system may include an inner package, an outer package, and an identification tag disposed between said inner package and said outer package. Said identification tag may be a radio-frequency identification (RFID) tag, a near-field communication (NFC) identification tag, or any variation thereof. In various embodiments, the display system may include a display shelf for positively positioning a plurality of product packages, at least one near-field communication antenna, and a control system. Each of said plurality of product packages may include said identification tag. Said control system may transmit and receive product information data to and from said identification tag for each of said plurality of product packages.
Abstract:
The present disclosure relates to an imaging system and a method of generating a depth map. The method comprises generating a first candidate depth map in response to a first pair of images associated with a first textured pattern, generating a second candidate depth map in response to a second pair of images associated with a second textured pattern different from the first textured pattern, determining one of pixels in a same location of the first and second candidate depth maps that is more reliable than the other; and generating a depth map based on the one pixel.
Abstract:
At least one embodiment relates to an autofocus method for determining a focal plane for at least one object. The method includes reconstructing a holographic image of the at least one object such as to provide a reconstructed image at a plurality of different focal depths. The reconstructed image includes a real component and an imaginary component. The method also include performing a first edge detection on the real component for at least two depths of the plurality of different focal depths and a second edge detection on the imaginary component for the at least two depths. Further, the method includes obtaining a first measure of clarity for each of the at least two depths based on a first measure of statistical dispersion with respect to the first edge detection and a second measure of clarity.
Abstract:
LED chip packaging assembly that facilitates an integrated method for mounting LED chips as a group to be pre-wired to be electrically connected to each other through a pattern of extendable metal wiring lines is provided. LED chips which are electrically connected to each other through extendable metal wiring lines, replace pick and place mounting and the wire bonding processes of the LED chips, respectively. Wafer level MEMS technology is utilized to form parallel wiring lines suspended and connected to various contact pads. Bonding wires connecting the LED chips are made into horizontally arranged extendable metal wiring lines which can be in a spring shape, and allowing for expanding and contracting of the distance between the connected LED chips. A tape is further provided to be bonded to the LED chips, and extended in size to enlarge distance between the LED chips to exceed the one or more prearranged distances.
Abstract:
LED chip packaging assembly that facilitates an integrated method for mounting LED chips as a group to be pre-wired to be electrically connected to each other through a pattern of extendable metal wiring lines is provided. LED chips which are electrically connected to each other through extendable metal wiring lines, replace pick and place mounting and the wire bonding processes of the LED chips, respectively. Wafer level MEMS technology is utilized to form parallel wiring lines suspended and connected to various contact pads. Bonding wires connecting the LED chips are made into horizontally arranged extendable metal wiring lines which can be in a spring shape, and allowing for expanding and contracting of the distance between the connected LED chips. A tape is further provided to be bonded to the LED chips, and extended in size to enlarge distance between the LED chips to exceed the one or more prearranged distances.
Abstract:
The present disclosure is directed to an apparatus and method of batch assembly. The apparatus for batch assembly may include a plurality of spring units, a plurality of handling units, and a control unit. The method of batch assembly may include aligning an array of devices with a plurality of handling units, attaching the array of devices onto the handling units, expanding the handling units so as to expand the array of devices from a first area to a second area, and transferring the array of devices to a destination.
Abstract:
A compliable unit in an compliable network comprises a first layer including at least one device component at a first region of the first layer, and a second layer including at least one compliable element at a first region of the second layer to transfer the at least one device component to a desired location. The first layer and the second layer are arranged in a stack.