Abstract:
A fuel cell system of the present invention includes: a fuel cell supplied with fuel gas and oxidizing gas to generate electricity; a fuel gas supply unit supplying the fuel gas to the fuel cell; an oxidizing gas supply unit supplying the oxidizing gas to the fuel cell; an aftercooler cooling the oxidizing gas supplied to the fuel cell by heat exchange with a coolant; an oxidizing gas temperature detector detecting temperature of the oxidizing gas; and a coolant circulation controller starting circulation of the coolant when the detected temperature of the oxidizing gas exceeds a predetermined value. The predetermined value is set to a value of not higher than a minimum electricity generation temperature of the fuel cell, and a circulation timing and flow rate of the coolant for the aftercooler are controlled such that the supplied oxidizing gas does not become cold. This enables the fuel cell to generate electricity at cold start-up.
Abstract:
An output limiting device for a fuel cell, including: an inlet coolant temperature sensor detecting an inlet coolant temperature at a coolant inlet of the fuel cell; an outlet coolant temperature sensor detecting an outlet coolant temperature at a coolant outlet of the fuel cell; and an output limiter limiting power or current extracted from the fuel cell according to the detected inlet coolant temperature and the detected outlet coolant temperature.
Abstract:
A fuel cell system capable of learning its current-voltage characteristics precisely in a short time even when the current-voltage characteristics of a fuel cell varies due to reduction of a catalyst of an oxidizing agent electrode during the stop of operation of the fuel cell system. A controller (13) learns current-voltage characteristics of a fuel cell stack (2), detects the amount of variation in voltage of current-voltage characteristics before a stop of power generation and those after restart of power generation, and corrects the learnt value of the current-voltage characteristics by the amount of variation in voltage.
Abstract:
A fuel cell system including: a fuel gas supply start command unit (101) for commanding start of a fuel gas supply to a fuel cell (1); a voltage detector (21) for detecting a fuel cell voltage; a control unit (103) for performing a deterioration preventing control for the fuel cell (1) based on the fuel cell voltage (CV) and a start command from the fuel gas supply start command unit (101); and another control unit (104) for controlling fuel gas feed rate according to the start command and the deterioration preventing control. The deterioration preventing control is performed at start-up of the fuel cell system. The fuel gas supply is started according to the start command, and after the deterioration preventing control is started, the fuel gas feed rate is increased.
Abstract:
A valve-clearance estimating apparatus estimates a valve-clearance that is a minute spacing between a valve drive element, and a valve element, which form an essential part of a moving body of an electro-magnetically operated valve. A position sensor determining an instant position of the valve drive element, a mass-change estimating portion estimate the mass of the moving body moving together with the valve drive element, and a valve-clearance estimating portion estimates the valve-clearance on the basis of a given position of the valve drive element determined by the position sensor at a time when a change in the mass of the moving body is estimated and when the valve drive element reaches proximate to one of its extreme positions.
Abstract:
An abnormal torque evaluation apparatus is applied to an electrically driven vehicle configured to drive left and right driving wheels independently with respective electric motors and also configured to independently drive the left and right driving wheels by means of the electric motors driven responsively to respective torque commands. Also provided are a yaw jerk detection means for detecting a yaw jerk and an abnormal torque evaluator for evaluating, based on the yaw jerk, the presence or absence of the occurrence of abnormal motor torque at the electric motors.
Abstract:
In an electromagnetically operable engine valve assembly including a controller for an internal combustion engine, a stable initialization is achieved which suppresses a collision of a movable element against an electromagnet to cope with a viscosity of a lubricating oil during an engine start under an engine low temperature. A supplied current value is feedback controlled in accordance with a position of movable element when an initialization control such that a current is continuously supplied to one of electromagnets is executed. At this time, the feedback control gain G1 is, first, set to a relatively small value and is, thereafter, switched to a relatively large value at a gradual pace for each execution of the initialization control until the initialization control has succeeded in moving the movable element to an initial position.
Abstract:
An electromagnetically actuated valve includes generally an electromagnet, an armature member driven by the electromagnet and a valve driven by the armature member. The armature member and the valve are movable together to constitute a movable unit. For controlling the electromagnetically actuated valve, there is provided a control system which comprises a position detecting unit that detects a position of the movable unit; a speed detecting unit that detects a moving speed of the movable unit; a target speed deriving section that derives a target speed of the movable unit by processing the position of the movable unit; a comparator section that compares the speed detected by the speed detecting unit with the target speed derived by the target speed deriving section; and a control section that, in accordance with the result of the comparison by the comparator section, controls the electromagnet.
Abstract:
This device controls a vehicle such that a relative distance between the vehicle and a vehicle in front of it becomes a target distance. When the relative distance becomes shorter than the target distance, the device automatically operates the brake actuator to increase the relative distance, but if the driver operates the accelerator pedal while the brake actuator is operating, this device decreases the target value output to the brake actuator according to the variation rate of a throttle opening.
Abstract:
An automatic speed control system for an automotive vehicle comprises a vehicle-speed sensor, a throttle actuator adjusting an opening angle of a throttle, a brake actuator adjusting a brake-fluid pressure applied to wheel cylinders, and a switching-operation decision unit controlling the switching from one of a driving-force control of the throttle actuator and a braking-force control of the brake actuator to the other. A first arithmetic circuit calculating a command signal value for the throttle actuator and a second arithmetic circuit calculating a command signal value for the brake actuator are designed to provide transition durations. The decision unit acts to continue either one or the other control executed prior to a transition for its transition duration.