摘要:
We have performed separation of bacterial and cancer cells from peripheral human blood in microfabricated electronic chips by dielectrophoresis. The isolated cells were examined by staining the nuclei with fluorescent dye followed by laser induced fluorescence imaging. We have also released DNA and RNA from the isolated cells electronically and detected specific marker sequences by DNA amplification followed by electronic hybridization to immobilized capture probes. Efforts towards the construction of a “laboratory-on-a-chip” system are presented which involves the selection of DNA probes, dyes, reagents and prototyping of the fully integrated portable instrument.
摘要:
Disclosed is a method and compositions for the differential expansion of fetal cells over maternal cells. In the method, cells from a sample of maternal blood containing CD34+ cells of both maternal and fetal origin are incubated in the presence of Stem Cell Factor in serum free media. It has been discovered that incubation of fetal cells in the presence of SCF will preferentially expand the fetal cells relative to adult cells. Fetal cells can also be identified, enriched or obtained by differential expansion of the fetal cells during colony formation. It has been discovered that differential expansion of fetal cells can result in colonies of fetal cells that are larger than colonies of adult cells. The fetal CD34+ cells can be expanded without generation of significant clonal genetic artifacts during expansion. Also disclosed is a method and compositions for producing differentiated fetal cells. It has been discovered that differentiated fetal cells have markers that distinguish the fetal cells from adult cells. Also disclosed are fetal cells made or obtained using the disclosed methods. For example, disclosed are expanded and/or differentiated fetal cells. The disclosed fetal cells can be used for any purpose and in any way that fetal cells can be used. The disclosed fetal cells are particularly useful for prenatal analysis of a gestating fetus.
摘要:
We have performed separation of bacterial and cancer cells from peripheral human blood in microfabricated electronic chips by dielectrophoresis. The isolated cells were examined by staining the nuclei with fluorescent dye followed by laser induced fluorescence imaging. We have also released DNA and RNA from the isolated cells electronically and detected specific marker sequences by DNA amplification followed by electronic hybridization to immobilized capture probes. Efforts towards the construction of a “laboratory-on-a-chip” system are presented which involves the selection of DNA probes, dyes, reagents and prototyping of the fully integrated portable instrument.
摘要:
This invention relates to methods for detecting the extent of hybridization of a nucleic acid in a sample to a probe nucleic acid sequence by electronically hybridizing the nucleic acid in the sample to the probe, utilizing the hybridized nucleic acid as a template in a nucleic acid polymerase reaction to extend the bound probe and incorporate a labeled nucleotide, and detecting the labeled product. This invention also relates to methods of detecting the extent of hybridization of a plurality of nucleic acids in a sample to a plurality of nucleic acid probes using similar methods.
摘要:
We have performed separation of bacterial and cancer cells from peripheral human blood in microfabricated electronic chips by dielectrophoresis. The isolated cells were examined by staining the nuclei with fluorescent dye followed by laser induced fluorescence imaging. We have also released DNA and RNA from the isolated cells electronically and detected specific marker sequences by DNA amplification followed by electronic hybridization to immobilized capture probes. Efforts towards the construction of a “laboratory-on-a-chip” system are presented which involves the selection of DNA probes, dyes, reagents and prototyping of the fully integrated portable instrument.