Abstract:
Apparatus and methods related to solar energy are provided. A reflector array is formed from a sheet material. The reflector array includes light concentrators and hinge features. A reflective surface treatment is applied to at least some portions of the reflector array. The reflector array is folded from an initial configuration into an operable configuration by way of the hinges. Housing, framework, foam material or other supports maintain the operable configuration. Photovoltaic cells or other entities are disposed at respective target locations so as receive concentrated photonic energy by way of the light concentrators.
Abstract:
Methods and apparatus are provided for solder bonding entities to solid materials. One or more through apertures are formed in a solid material. Solder paste is introduced into each through aperture. Respective entities having solderable surface features are disposed in overlying alignment with the through apertures. The arrangement is heated causing molten solder paste to wet the solderable surface features and the solid material. Cooling results in the electrical and mechanical bonding of the entities to the solid material. Devices having substantially planar form factors and without lead wires can be electrically and mechanically secured to a supporting conductive stratum.
Abstract:
Systems and methods for electroplating embossed features on substrates are disclosed. In an exemplary implementation, a method may include positioning a device in close proximity to an anode. The device may have embossed trenches. The method may also include delivering pressurized electrolyte to the anode. The method may also include activating electrical power between the anode and the device. The metal ions migrate into the embossed trenches to form electroplated metal traces on the device
Abstract:
Apparatus and methods related to photonic energy are provided. A device includes a reflector bearing a surface treatment and defining one or more photonic energy-concentrating areas. Target entities such as photovoltaic cells or thermal absorption conduits are disposed at the respective photonic energy-concentrating locations. A transparent cover can be used to protect the reflector. A foam material characterized by structural rigidity is disposed between and in contact with the backside of the reflector and a support housing. The assembled device resists bending, twisting or other deformation by virtue of the rigidity of the foam material.
Abstract:
Apparatus and methods related to solar energy are provided. A modular solar panel includes heat pipes to transfer heat away from photovoltaic cells. The solar panel is supported on a tracking mechanism and the heat pipes are coupled in thermal communication with heat exchangers. The solar panel is positioned by the tracking mechanism to follow the sun across the sky. Heat is transferred from the photovoltaic cells to the heat pipes and in turn to the heat exchangers, and is ultimately rejected from the system.
Abstract:
Apparatus and methods are provided. A first sheet of flexible material is placed against a surface of a form. The first sheet bears an adhesive on one side. A second sheet of flexible material is brought into contact with the adhesive and the two sheets are pressed into conformant contact with the surface of the form. The first and second sheets are thus bonded to form a rigid or semi-rigid entity having a cross-sectional shape in accordance with the surface contours of the form.
Abstract:
Apparatus and methods are provided for use with photovoltaic cells, light emitting devices and the like. Reflective regions are formed on a sheet of flexible, non-metallic sheet material. The sheet material is folded to at least partially define a finished shape. Supports complete and maintain the folded condition such that one or more truncated parabolic troughs are defined. Incident light may be received and concentrated, or emitted light concentrated and projected, by way of the troughs.
Abstract:
A flexible substrate layer having metallic bus-lines and connecting stitches is formed. A trace layer having electrical traces and thermal vias is also formed. The substrate layer and the trace layer are bonded together by way of respective thermal pathways and electrically interconnected. The resulting layer-wise assembly is configured to support and electrically interconnect an array of photovoltaic cells and to channel away heat during operation.
Abstract:
Apparatus are provided for use in photovoltaic systems. A photovoltaic array includes a rigid transparent material supporting a flexible material there beneath. Numerous photovoltaic cells are supported by the flexible material and are electrically coupled to circuit pathways borne there on. A positioner operates to shift the flexible material thus adjusting respective angular relationships between the photovoltaic cells and the overlying transparent material. Photovoltaic cells are reoriented in accordance with daily or seasonal variations in the suns position by way of the present teachings.
Abstract:
A flexible substrate layer having metallic bus-lines and connecting stitches is formed. A trace layer having electrical traces and thermal vias is also formed. The substrate layer and the trace layer are bonded together by way of respective thermal pathways and electrically interconnected. The resulting layer-wise assembly is configured to support and electrically interconnect an array of photovoltaic cells and to channel away heat during operation.