Abstract:
A copper core used in electroformed metal (EFM) masks is replaced with a copper/molybdenum/copper clad core (Cu/Mo/Cu). The copper cladding on the molybdenum enhances adhesion of electroplated nickel. The nickel is electro-deposited through a patterned resist template onto the copper clad molybdenum surface. The copper and molybdenum are etched by selective etchants that do not attack other non-etched layers, leaving a patterned nickel stencil on a high-strength supporting base.
Abstract translation:用于电铸金属(EFM)掩模的铜芯被铜/钼/铜包芯(Cu / Mo / Cu)替代。 钼上的铜包层增强了电镀镍的附着力。 镍通过图案化的抗蚀剂模板电沉积到铜包覆钼表面上。 铜和钼通过不侵蚀其它未蚀刻层的选择性蚀刻剂进行蚀刻,在高强度支撑基底上留下图案化的镍网板。
Abstract:
Photoresist stripping is performed by having a piecepart with a conductive layer that patterned by the photoresist immersed in a neutral solution. A voltage potential is applied to induce a current between the conductive layer and a counter electrode in neutral solution bath at a specified current density. After a short period of time, on the order of minutes, the photoresist is lifted off the piecepart. The piecepart is then removed from the bath, rinsed and dried.
Abstract:
A structure. The structure includes a layered configuration including a copper layer, a first layer, and a second layer. The first and second layers are disposed on opposite sides of the copper layer and are in direct mechanical contact with the copper layer. The first and second layers each include a same alloy of nickel and a metal consisting of cobalt, iron, copper, manganese, or molybdenum. A first region in the first layer extends completely through the first layer. A second region in the second layer extends completely through the second layer. A third region in the first layer extends completely through the first layer. The third region does not extend into any portion of the second layer. The first, second region, and third regions each include a photoresist or an opening such that photoresist or opening extends completely through the first, second, and first layer, respectively.
Abstract:
A structure and associated methods of formation. The structure includes a layered configuration comprising a copper layer, a first layer, and a second layer. The copper layer consists essentially of copper. The first and second layers are disposed on opposite sides of the copper layer and are in direct mechanical contact with the copper layer. The first and second layers each consist essentially of a same alloy of nickel and cobalt having a weight percent concentration of cobalt in a range of 3% to 21%. A through hole in the layered configuration extends completely through the first layer, the copper layer, and the second layer, wherein a first opening in the layered configuration extends completely through the first layer and does not extend into any portion of the second layer.
Abstract:
A screening nest, method of screening green sheets and cleaning the mask and a mask cleaning station. The screening nest includes an electromagnet that clamps the mask to a green sheet on the nest during screening. The mask may be electromagnetically dampened during application and removal. The cleaning station electromagnetically dampens the mask during cleaning and especially during rinsing and drying.
Abstract:
A multilayer ceramic repair process which provides a new electrical repair path to connect top surface vias. The repair path is established between a defective net and a redundant repair net contained within the multilayer ceramic substrate. The defective net and the repair net each terminate at surface vias of the substrate. A laser is used to form post fired circuitry on and in the substrate. This is followed by the electrical isolation of the defective net from the electrical repair structure and passivation of the electrical repair line.