Abstract:
A radiation detector assembly has a semiconductor detector array substrate of CdZnTe or CdTe, having a plurality of detector cell pads on a first surface thereof, the pads having a contact metallization and a solder barrier metallization. An interposer card has planar dimensions no larger than planar dimensions of the semiconductor detector array substrate, a plurality of interconnect pads on a first surface thereof, at least one readout semiconductor chip and at least one connector on a second surface thereof, each having planar dimensions no larger than the planar dimensions of the interposer card. Solder columns extend from contacts on the interposer first surface to the plurality of pads on the semiconductor detector array substrate first surface, the solder columns having at least one solder having a melting point or liquidus less than 120 degrees C. An encapsulant is disposed between the interposer circuit card first surface and the semiconductor detector array substrate first surface, encapsulating the solder columns, the encapsulant curing at a temperature no greater than 120 degrees C.
Abstract:
A thermally curable adhesive composition that includes a fluxing agent that also acts as an adhesive is provided. The composition includes: (a) a fluxing agent represented by the formula RCOOH, wherein R comprises a moiety having two or more carbon-carbon double bonds wherein in one embodiment, at least one is within an acrylate or methacrylate group, and which may further contain at least one aromatic moiety; (b) a carboxylic acid neutralizing agent; (c) optionally, a crosslinkable diluent; (d) optionally, a source of free radical initiators; and (e) optionally, a resin. The composition can be applied directly onto the surface(s) of devices that are to be joined electrically and mechanically. These devices include, printed circuit substrates, connectors, components, cables, and other electrical devices having metallization patterns to be soldered together by means of a solder-bumped pattern on one or both surfaces. Alternatively, a solder paste, comprising solder powder mixed with the fluxing agent of the present invention can be used. During the reflow step, the fluxing agent promotes wetting of the solder to the metallization patterns and, simultaneously, the fluxing agent itself crosslinks to mechanically bond and encapsulate the surfaces and their metallizations. The compositions can also be used to formulate sinterable conductive ink.
Abstract:
An inventive method for electrical and thermal electronic component attachment is disclosed. The combination of transient liquid phase sintering (TLPS) and a permanent adhesive flux binder provides the advantages of both conventional soldering technology and conductive adhesives. This hybrid approach delivers electrical and thermal conduction through sintered metal joints and mechanical properties based on a tailorable polymer matrix. These transient liquid phase sintering conductive adhesives can utilize conventional dispensing, placement, and processing equipment. During the reflow process, metal powders in the composition undergo interparticle sintering as well as alloying to the contact pads. This process produces a strong mechanical, thermal, and electrical interconnect which ensures good conductivity that is also resistant to humidity and temperature cycling.
Abstract:
In accordance with the present invention, there are provided novel vertically interconnected assemblies and compositions useful therefore. Invention assemblies comprise substrate boards with multiple layer electronic assemblies. The multiple layers comprise individual layers of circuitry separated and adhered by dielectric materials selectively coated and/or filled with a transient liquid phase sintered (TLPS) material. The TLPS is formulated to be electrically conductive, and thereby serves to convey current between the layers of circuitry. In addition, the TLPS is easily workable so that it is amenable to automated, stepwise construction of multilayer circuitry without the need for labor intensive drilling and filling of conductive vias.
Abstract:
A radiation detector assembly has a semiconductor detector array substrate of CdZnTe or CdTe, having a plurality of detector cell pads on a first surface thereof, the pads having a contact metallization and a solder barrier metallization. An interposer card has planar dimensions no larger than planar dimensions of the semiconductor detector array substrate, a plurality of interconnect pads on a first surface thereof, at least one readout semiconductor chip and at least one connector on a second surface thereof, each having planar dimensions no larger than the planar dimensions of the interposer card. Solder columns extend from contacts on the interposer first surface to the plurality of pads on the semiconductor detector array substrate first surface, the solder columns having at least one solder having a melting point or liquidus less than 120 degrees C. An encapsulant is disposed between the interposer circuit card first surface and the semiconductor detector array substrate first surface, encapsulating the solder columns, the encapsulant curing at a temperature no greater than 120 degrees C.