Abstract:
A battery module that includes a plurality of electrochemical cells. Each of the electrochemical cells has a first end including at least one terminal and a second end having a vent. The plurality of electrochemical cells are arranged such that the second ends of a first set of the plurality of electrochemical cells face the second ends of a second set of the plurality of electrochemical cells. A central chamber is located between the second ends of the first set of the plurality of electrochemical cells and the second ends of the second set of the plurality of electrochemical cells. The central chamber is configured to receive gases released from the vents of the plurality of electrochemical cells.
Abstract:
A signal representing the RPM of an internal combustion engine is produced by a signal processor connected to the battery of the vehicle. The signal processor derives an electrical signal from the battery which contains signal components produced by operation of the vehicle ignition system, as well as components from a multitude of other sources such as the voltage regulator, fans, air conditioning and other electrical systems of the vehicle. The signal processor filters and signal processes the signal derived from the vehicle battery to produce a signal having a frequency which is related to the RPM of the engine.
Abstract:
A battery module for use in an electric vehicle includes a housing and a member provided within the housing that contains a plurality of electrochemical cells. The member includes apertures in an outer surface of the member that allow a thermal management fluid to exit the member after passing adjacent outer surfaces of the plurality of the electrochemical cells within the member. The apertures include apertures of a first size near a first end of the member and apertures of a second size larger than the first size near a second opposite end of the member.
Abstract:
A method and system for managing a battery system for a vehicle utilizes a hierarchy to disconnect electrical loads from the battery system. One embodiment of the method includes receiving an input signal representative of a condition of one of the components of one of the systems provided in a vehicle. The method also includes comparing the input signal with at least one parameter to determine whether the condition indicates that at least one of the plurality of electrical loads should be disconnected from the battery. The method also includes disconnecting at least one of the plurality of electrical loads from the at least one battery according to a predetermined hierarchy if the input signal when compared to the parameter indicates that at least one of the plurality of electrical loads should be disconnected from the at least one battery.
Abstract:
A vehicle anti-theft system that disables a vehicle engine upon detection of an unauthorized vehicle start-up, after the engine is running, by disconnecting the vehicle battery and draining the vehicle electrical system voltage to ground through a resistor. When the system is armed, it monitors whether the engine is running and has been recently started by detecting vibrations, fluctuations in the VES voltage, and the actual VES voltage. The system includes an electro-mechanical switch that has a battery internal contact, a vehicle electrical system, the standard battery external terminal, contact and a disconnect contact. When the switch is connected to the battery contact, the vehicle battery is connected in the circuit. When the switch is connected to the vehicle electrical system contact, the system is connected to ground through a resistance and the battery is disconnected from circuit. When the switch is connected to the disconnect contact, the battery is disconnected and the vehicle electrical system is not connected to ground. When the switch is not energized, it is either connected to the battery contact or the disconnect contact. When the switch is energized, the switch will switch to the vehicle electrical system contact, and then when it is deenergized, it will switch to the opposite battery contact or disconnect contact. The system includes logic so that if the engine is running and has been recently started when it is armed, the system will energize the switch to disconnect it from the battery contact and connect it to the vehicle electrical system contact for a predetermined time to drain the electrical system voltage to ground.
Abstract:
A vehicle anti-theft system that disables a vehicle engine upon detection of an unauthorized vehicle start-up, after the engine is running, by disconnecting the vehicle battery and draining the alternator voltage to ground through a resistor. A fob transmitter transmits a coded frequency signal that is received by a receiver associated with the anti-theft system to arm the system. When the system is armed, it monitors whether the engine is running and has been recently started using a combination of vibration detection, voltage fluctuations in the battery voltage and the actual battery voltage. If the system determines that the engine is running and has been recently started, the system will issue a first command that opens a relay switch to disconnect the battery and a second command that closes a switch to connect the alternator to ground through the resistor. In order to prevent a vehicle from being jump started by using a second battery, the system includes a reset clock and associated delay that resets the decision to connect the alternator to ground at periodic intervals so as to repeatedly test for the presence of the second battery and cause the engine to stall after the second battery is disconnected. A driver entry detection portion of the system determines whether someone has entered the vehicle, and issues a chirp signal to notify the occupant that the system is armed. A state of charge algorithm is also provided to determine whether the battery voltage has reached a minimum state of charge for reliably starting the vehicle, and also disconnect the battery once the minimum level has been reached.
Abstract:
A battery module that includes a plurality of electrochemical cells. Each of the electrochemical cells has a first end including at least one terminal and a second end having a vent. The plurality of electrochemical cells are arranged such that the second ends of a first set of the plurality of electrochemical cells face the second ends of a second set of the plurality of electrochemical cells. A central chamber is located between the second ends of the first set of the plurality of electrochemical cells and the second ends of the second set of the plurality of electrochemical cells. The central chamber is configured to receive gases released from the vents of the plurality of electrochemical cells.
Abstract:
A method of selecting a battery for a vehicle includes identifying a plurality of batteries and obtaining ratings for a plurality of characteristics for each of the plurality of batteries. The method also includes obtaining information relating to the usage of the vehicle and identifying a battery for use with the vehicle based on the ratings and the information relating to the usage of the vehicle. The method may also include weighting a plurality of the ratings and utilizing the weighted ratings to identify an optimal battery.
Abstract:
A lithium battery for use in a vehicle includes a container, a plurality of positive terminals extending from a first end of the lithium battery, and a plurality of negative terminals extending from a second end of the lithium battery. The plurality of positive terminals are provided in a first configuration and the plurality of negative terminals are provided in a second configuration, the first configuration differing from the second configuration. A battery system for use in a vehicle may include a plurality of electrically connected lithium cells or batteries.