Abstract:
A novel lead zirconium titanate (PZT) material having unique properties and application for PZT thin film capacitors and ferroelectric capacitor structures, e.g., FeRAMs, employing such thin film material. The PZT material is scalable, being dimensionally scalable, pulse length scalable and/or E-field scalable in character, and is useful for ferroelectric capacitors over a wide range of thicknesses, e.g., from about 20 nanometers to about 150 nanometers, and a range of lateral dimensions extending to as low as 0.15 μm. Corresponding capacitor areas (i.e., lateral scaling) in a preferred embodiment are in the range of from about 104 to about 10−2 μm2. The scalable PZT material of the invention may be formed by liquid delivery MOCVD, without PZT film modification techniques such as acceptor doping or use of film modifiers (e.g., Nb, Ta, La, Sr, Ca and the like).
Abstract:
The present invention provides methods of inducing immune responses by recombinant antigen-enterotoxin chimeric mucosal immunogens that contain the A2/B subunits of cholera toxin or heat-labile type II toxins. These chimeric immunogens differentially enhance antibody secretion, cytokine production, as well as B7-dependent co-stimulation of T cells and CD40L expression on CD4+ T cells.
Abstract:
A chemical mechanical polishing (CMP) slurry composition for removing noble metal material from a substrate having the noble metal material deposited thereon, for example, a semiconductor device structure including thereon a layer of the noble metal material, e.g., iridium, patterned for use as an electrode. Such polishing slurry composition contains abrasive polishing particles, a bromide compound, a bromate compound for providing free bromine as an oxidizing agent in the composition, and an organic acid for mediating decomposition of the bromate compound in the composition. The CMP slurry composition of the invention is particularly effective for planarization and/or removal of noble metal(s) from the substrate, in applications such as the fabrication of ferroelectric or high permittivity capacitor devices.
Abstract:
A novel lead zirconium titanate (PZT) material having unique properties and application for PZT thin film capacitors and ferroelectric capacitor structures, e.g., FeRAMs, employing such thin film material. The PZT material is scalable, being dimensionally scalable, pulse length scalable and/or E-field scalable in character, and is useful for ferroelectric capacitors over a wide range of thicknesses, e.g., from about 20 nanometers to about 150 nanometers, and a range of lateral dimensions extending to as low as 0.15 &mgr;m. Corresponding capacitor areas (i.e., lateral scaling) in a preferred embodiment are in the range of from about 104 to about 10−2 &mgr;m2. The scalable PZT material of the invention may be formed by liquid delivery MOCVD, without PZT film modification techniques such as acceptor doping or use of film modifiers (e.g., Nb, Ta, La, Sr, Ca and the like).
Abstract:
The present invention is a method related to the deposition of a metallization layer in a trench in a semiconductor substrate. The focus of the invention is to sequentially perform heated deposition and etch unit processes to provide a good conformal film of metal on the inner surfaces of a via or trench. The deposition and etch steps can also be performed simultaneously.
Abstract:
A novel lead zirconium titanate (PZT) material having unique properties and application for PZT thin film capacitors and ferroelectric capacitor structures, e.g., FeRAMs, employing such thin film material. The PZT material is scalable, being dimensionally scalable, pulse length scalable and/or E-field scalable in character, and is useful for ferroelectric capacitors over a wide range of thicknesses, e.g., from about 20 nanometers to about 150 nanometers, and a range of lateral dimensions extending to as low as 0.15 μm. Corresponding capacitor areas (i.e., lateral scaling) in a preferred embodiment are in the range of from about 104 to about 10−2 μm2. The scalable PZT material of the invention may be formed by liquid delivery MOCVD, without PZT film modification techniques such as acceptor doping or use of film modifiers (e.g., Nb, Ta, La, Sr, Ca and the like).
Abstract:
A novel lead zirconium titanate (PZT) material having unique properties and application for PZT thin film capacitors and ferroelectric capacitor structures, e.g., FeRAMs, employing such thin film material. The PZT material is scalable, being dimensionally scalable, pulse length scalable and/or E-field scalable in character, and is useful for ferroelectric capacitors over a wide range of thicknesses, e.g., from about 20 nanometers to about 150 nanometers, and a range of lateral dimensions extending to as low as 0.15 μm. Corresponding capacitor areas (i.e., lateral scaling) in a preferred embodiment are in the range of from about 104 to about 10−2 μm2. The scalable PZT material of the invention may be formed by liquid delivery MOCVD, without PZT film modification techniques such as acceptor doping or use of film modifiers (e.g., Nb, Ta, La, Sr, Ca and the like).
Abstract:
A novel lead zirconium titanate (PZT) material having unique properties and application for PZT thin film capacitors and ferroelectric capacitor structures, e.g., FeRAMs, employing such thin film material. The PZT material is scalable, being dimensionally scalable, pulse length scalable and/or E-field scalable in character, and is useful for ferroelectric capacitors over a wide range of thicknesses, e.g., from about 20 nanometers to about 150 nanometers, and a range of lateral dimensions extending to as low as 0.15 μm. Corresponding capacitor areas (i.e., lateral scaling) in a preferred embodiment are in the range of from about 104 to about 10−2 μm2. The scalable PZT material of the invention may be formed by liquid delivery MOCVD, without PZT film modification techniques such as acceptor doping or use of film modifiers (e.g., Nb, Ta, La, Sr, Ca and the like).
Abstract:
A novel lead zirconium titanate (PZT) material having unique properties and application for PZT thin film capacitors and ferroelectric capacitor structures, e.g., FeRAMs, employing such thin film material. The PZT material is scalable, being dimensionally scalable, pulse length scalable and/or E-field scalable in character, and is useful for ferroelectric capacitors over a wide range of thicknesses, e.g., from about 20 nanometers to about 150 nanometers, and a range of lateral dimensions extending to as low as 0.15 μm. Corresponding capacitor areas (i.e., lateral scaling) in a preferred embodiment are in the range of from about 104 to about 10−2 μm2. The scalable PZT material of the invention may be formed by liquid delivery MOCVD, without PZT film modification techniques such as acceptor doping or use of film modifiers (e.g., Nb, Ta, La, Sr, Ca and the like).
Abstract:
A method of preventing oxygen deficiency in a ferroelectric or high ε film material having a top electrode layer deposited thereon. Process conditions are employed that either enable the top electrode layer to be formed without oxygen abstraction from the ferroelectric or high ε film material in the vicinity and at the top surface thereof, or else provide the ferroelectric or high ε film material in the vicinity and at the top surface thereof with a surplus of oxygen. In the latter case, the deposition formation of the top electrode layer on the ferroelectric or high ε film material depletes the over-stoichiometric excess of the oxygen in the film material, to yield a device structure including an electrode on a film material having a proper stoichiometry, e.g., of PbZrTiO3.