摘要:
A method and apparatus for manufacturing an amorphous metal ribbon provides the following: jetting a molten metal from a nozzle, which has a slit-shaped opening, to a cooling roll, which rotates at a high speed, so as to form a puddle on the cooling roll; and spreading the puddle for rapid solidification. Additionally, the present invention provides at a position upstream from the puddle in a direction opposite the direction of rotation of the cooling roll, cleaning the surface of the cooling roll by blowing carbon dioxide gas to which ultrasonic vibration is applied.
摘要:
It is an object of the present invention to provide a dual-gate type MESFET having a high drain breakdown voltage and excellent high-frequency characteristics. A semiconductor substrate used in the present invention is obtained by sequentially forming a non-doped buffer layer 2, a thin first pulse-doped layer 3 having a high impurity concentration, and a cap layer 7 on an underlying semiconductor substrate 1 by epitaxial growth. The cap layer 7 has a thin second pulse-doped layer 5 having a high impurity concentration sandwiched between non-doped layers 4 and 6. The thickness and impurity concentration of the second pulse-doped layer 5 are set such that the second pulse-doped layer 5 is depleted by a surface depletion layer caused by the interface state of the cap layer surface, and the surface depletion layer does not extend to the first pulse-doped layer 3. A source electrode 13, a drain electrode 16, and first and second gate electrodes 14 and 15 are formed on the semiconductor substrate surface. High-impurity-concentration ion implantation regions 10, 11, and 12 are formed at a source electrode formation region, a drain electrode formation region, and a region between the first and second gate electrode formation regions to extend from the semiconductor substrate surface to the first pulse-doped layer 3. The second electrode 15 formed on the drain electrode 16 side is sufficiently separated from the high-impurity-concentration ion implantation region 12 below the drain electrode 16.
摘要:
The receiving device according to this invention includes one or more patch or helical antennas and one or more receiving units formed monolithically on a single substrate. In order to widen the receiving frequency band, antenna elements are formed not directly on a compound semiconductor substrate but with a space between the antenna element and the substrate. In the patch antenna embodiment, patch elements are supported by dielectric posts, whereby there is provided a void between most of the patch antenna and the underlying semiconductor substrate.
摘要:
This invention is a high-frequency oscillator including a MESFET, wherein a GaAs MESFET, in which the doping profile of an active layer has a pulse-doped structure, is used as the MESFET. Since the GaAs MESFET is formed to have the pulse-doped structure, the change in transconductance with respect to the change in gate resistance remains constant at gate voltages within a predetermined range. When the gate voltage is set to be a voltage within this predetermined range, a capacitance change with respect to a gate voltage across a gate and a source is reduced. FM noise proportional to the magnitude of this capacitance change is reduced. Accurate information transmission is not interfered with unlike in conventional arrangements.
摘要:
A semiconductor device includes an FET having side gate electrodes. The FET has a plurality of side gate electrodes, and the side gate electrodes, side gate input terminals and lead wires connecting them are arranged such that a difference between electrical lengths from the side gate electrodes to the input terminals (pads) is smaller than a quarter wavelength of the input signals thereto. Thus, even if a microwave signal is applied to the side gate input terminals, the signals reach the side gate electrodes with substantially the same phase and the side gate effect extends to the entire gate electrode.
摘要:
In a high impedance type light receiver circuit comprising a light receiving device, an amplifier circuit for amplifying an output of the light receiving device and an equalizer for band compensation, a capacitor of the equalizer is formed by the same PN junction structure as that of the light receiving device, and the light receiving device, the amplifier circuit and the equalizer are integrated on one semiconductor substrate so that adjustment of the time constant of the equalizer is not necessary. In this manner, the productivity of a high impedance type light receiver circuit which can attain a higher sensitivity than a trans-impedance type circuit, is improved.
摘要:
In an optical module with a substrate having an optical unit mounted thereon which substrate is provided on the bottom of a package so that the optical unit is optically coupled with an end of an optical fiber extending into the package, a chip carrier, including the optical unit, is die-bonded to a conductive land formed on the substrate. A recess is formed in the bottom of the package which faces the land. Thus, a capacitance of a parallel-plate capacitor formed by the land and the bottom of the is made negligibly small.
摘要:
A switching circuit according to one embodiment has: N switching elements; a connection circuit including N−1 first inductance elements that are connected in series; a second inductance element; and N third inductance elements. Control terminals of the N switching elements are connected to ends of the connection circuit and connection contacts, respectively. One end of the second inductance element is connected to a power supply. The N third inductance elements electrically connects one ends of the N switching elements and the other end of the second inductance element with each other, respectively.
摘要:
A switching circuit according to one embodiment includes first to fourth semiconductor switch elements. A pulse-like signal is applied to each input terminal of the switch elements such that when the first and fourth switch elements are in an ON (OFF) state, the remaining switch elements are in an OFF (ON) state. The switching circuit includes first and second capacitance elements. The first capacitance elements connected between an output terminal of the second semiconductor switch element and the second capacitance elements connected between an input terminal of the second semiconductor switch element and an output terminal of the fourth semiconductor switch element has a capacitance to reduce a parasitic capacitance between the input and output terminals of each of the fourth and second switch elements at a frequency N times (N is an integer of 1 or more) as high as a clock frequency of the pulse-like signal.