摘要:
A high throughput ion implantation system that rapidly and efficiently processes large quantities of flat panel displays. The ion implantation system has an ion chamber generating a stream of ions, a plasma electrode having an elongated slot with a high aspect ratio for shaping the stream of ions into a ribbon beam, and an electrode assembly for directing the stream of ions towards a workpiece. The plasma electrode can include a split extraction system having a plurality of elongated slots oriented substantially parallel to each other. The ion implantation system can also have a diffusing system for homogenizing the ion stream. Various exemplary diffusing systems include an apertured plate having an array of openings, diffusing magnets, diffusing electrodes, and dithering magnets.
摘要:
An ion implantation system that rapidly and efficiently processes large quantities of workpieces, such as flat panel displays. The ion implantation system includes a high vacuum process chamber that mounts an ion source, a single workpiece translating stage, and a loadlock. The single workpiece handling assembly mounted within the process chamber both removes the workpiece from the loadlock and supports the workpiece during implantation by the ion beam generated by the ion source. The process chamber is in selective fluid communication with a loadlock assembly, which in turn is mechanically integrated with a workpiece loading or end station. Additionally, the workpiece handling assembly includes a translation stage or element for translating the workpiece in a linear scanning direction during implantation. This linear scanning direction extends along a path transverse or orthogonal to the horizontal longitudinal axis of the implantation system. According to one practice, the scanning direction and the longitudinal axis form an angle therebetween that is less than or equal to about 85 degrees.
摘要:
An ion implantation system that rapidly and efficiently processes large quantities of workpieces, such as flat panel displays. The ion implantation system includes a high vacuum process chamber that mounts an ion source, a single workpiece translating stage, and a loadlock. The single workpiece handling assembly mounted within the process chamber both removes the workpiece from the loadlock and supports the workpiece during implantation by the ion beam generated by the ion source. The process chamber is in selective fluid communication with a loadlock assembly, which in turn is mechanically integrated with a workpiece loading or end station. Additionally, the workpiece handling assembly includes a translation stage or element for translating the workpiece in a linear scanning direction during implantation. This linear scanning direction extends along a path transverse or orthogonal to the horizontal longitudinal axis of the implantation system. According to one practice, the scanning direction and the longitudinal axis form an angle therebetween that is less than or equal to about 85 degrees.
摘要:
A system and method for conductively and/or convectively transferring heat away from a workpiece that has been processed by a processing system, such as an ion implantation system. The conductive transfer of heat from the workpiece is effectuated by disposing the workpiece in relatively close proximity with a floor of a loadlock, which is maintained at a relatively cool temperature. The chamber pressure is disposed at a selected pressure by a pressure regulator and a vacuum pressure is applied to the backside of the workpiece closest to draw the workpiece into contact with the chamber floor, thereby effecting heat transfer from the workpiece to the cooling surface.
摘要:
A high throughput ion implantation system that rapidly and efficiently processes large quantities of flat panel displays. The ion implantation system has an ion source, an electrode assembly, a platform mounting a workpiece, and a ion beam measuring structure. The ion source in conjunction with the electrode assembly forms an ion beam in the shape of a ribbon beam. The ion beam is formed and directed such that a first portion of the ion beam treats the workpiece while a second portion of the ion beam is contemporaneously measured by the beam measuring structure. A controller obtains data from the beam measuring structure on the ion beam's parameters, and then generates control signals to the ion implantation system in response to the data.
摘要:
An ion source for generating an ion beam of primary ions is disclosed that includes a plasma chamber and magnets positioned therein for separating the primary ions of the plasma from secondary ions within the plasma. An electrode assembly extracts the primary ions through an extractor outlet port of the plasma chamber to form an ion beam, which preferentially is shaped as a ribbon beam. The primary ions are accelerated in the form of a ribbon beam toward the target workpiece for doping the device. The magnets are oriented in the chamber to produce a uniform current density of primary ions parallel to the elongated axis of the ribbon beam.
摘要:
A novel technique for manufacturing bit patterned media is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for manufacturing bit pattern media. The technique, which may be realized as a method comprising: forming a non-catalysis region on a first portion of a catalysis layer; forming a non-magnetic separator on the non-catalysis region; and forming a magnetic active region on a second portion of the catalysis layer adjacent to the first portion of the catalysis layer.
摘要:
A method of cleaving a substrate is disclosed. A species, such as hydrogen or helium, is implanted into a substrate to form a layer of microbubbles. The substrate is then annealed a pressure greater than atmosphere. This annealing may be performed in the presence of the species that was implanted. This diffuses the species into the substrate. The substrate is then cleaved along the layer of microbubbles. Other steps to form an oxide layer or to bond to a handle also may be included.
摘要:
A substrate is implanted with a species to form a layer of microbubbles in the substrate. The species may be hydrogen or helium in some embodiments. The size at which the microbubbles are stable within the substrate is controlled. In one example, this is by cooling the substrate. In one embodiment, the substrate is cooled to approximately between −150° C. and 30° C. This cooling also may reduce diffusion of the species in the substrate and will reduce surface roughness when the substrate is cleaved along the layer of microbubbles.
摘要:
A media carrier, adapted to hold a plurality of pieces of magnetic media, is disclosed. This media carrier can be placed on the workpiece support, or platen, allowing the magnetic media to be processed. In some embodiments, the media carrier is designed such that only one side of the magnetic media is exposed, requiring a robot or other equipment to invert each piece of media in the carrier to process the second side. In other embodiments, the media carrier is designed such that both sides of the magnetic media are exposed. In this scenario, the media carrier is inverted on the platen to allow processing of the second side.