摘要:
A repeller structure is provided in a plasma generating chamber of an ion source facing a cathode that emits electrons for ionizing a source gas in the plasma generating chamber to generate a plasma. The repeller structure reflects the ions toward the cathode. The repeller structure includes a sputtering target that is sputtered by the plasma to emit predetermined ions, the sputtering target including a through hole that connects a sputtering surface and a back surface of the sputtering target; and an electrode body that is inserted in the through hole, the electrode body including a repeller surface that is exposed to the sputtering surface side through the through hole.
摘要:
An ion source includes a plasma generating chamber into which an ionization gas containing fluorine is introduced, a hot cathode provided on one side in the plasma generating chamber, an opposing reflecting electrode which is provided on other side in the plasma generating chamber and reflects electrons when a negative voltage is applied from a bias power supply to the opposing reflecting electrode, and a magnet for generating a magnetic field along a line, which connects the hot cathode and the opposing reflecting electrode, in the plasma generating chamber. The opposing reflecting electrode is formed of an aluminum containing material.
摘要:
An ion source includes a plasma generating chamber into which an ionization gas containing fluorine is introduced, a hot cathode provided on one side in the plasma generating chamber, an opposing reflecting electrode which is provided on other side in the plasma generating chamber and reflects electrons when a negative voltage is applied from a bias power supply to the opposing reflecting electrode, and a magnet for generating a magnetic field along a line, which connects the hot cathode and the opposing reflecting electrode, in the plasma generating chamber. The opposing reflecting electrode is formed of an aluminum containing material.
摘要:
An ion source is to extract a ribbon-shaped ion beam longer in the Y direction in the Z direction and provided with a plasma generating chamber, a plasma electrode which is disposed near the end of the plasma generating chamber in the Z direction and has an ion extracting port extending in the Y direction, a plurality of cathodes for emitting electrons into the plasma generating chamber to generate a plasma and arranged in a plurality of stages along the Y direction, and a magnetic coil which generates magnetic fields along the Z direction in a domain containing the plurality of cathodes inside the plasma generating chamber.
摘要:
An ion implanting apparatus includes: an electrostatic accelerating tube for causing an ion beam extracted from an ion source to have a desirable energy, and deflecting the ion beam to be incident on a target, the electrostatic accelerating tube including deflecting electrodes provided to interpose the ion beam therebetween. The deflecting electrodes include a first deflecting electrode and a second deflecting electrode to which different electric potentials from each other are set. The second deflecting electrode is provided on a side where the ion beam is to be deflected and includes an upstream electrode provided on an upstream side of the ion beam and a downstream electrode provided apart from the upstream electrode toward a downstream side. An electric potential of the upstream electrode and an electric potential of the downstream electrode are independently set from each other.
摘要:
This ion source generates a ribbon-like ion beam whose dimension in the Y direction is larger than the dimension in the X direction. This ion source includes a plasma generating vessel having an ion extraction port extending in the Y direction, a plurality of cathodes arranged in a plurality of stages along the Y direction on one side in the X direction in the plasma generating vessel, a reflecting electrode arranged on the other side in the X direction in the plasma generating vessel opposite to the cathodes, and electromagnets for generating magnetic fields along the X direction in regions including the plurality of cathodes in the plasma generating vessel.
摘要:
An ion beam irradiating apparatus has: a beam profile monitor 14 which measures a beam current density distribution in y direction of an ion beam 4 in the vicinity of a target 8; movable shielding plate groups 18a, 18b respectively having plural movable shielding plates 16 which are arranged in the y direction so as to be opposed to each other across an ion beam path on an upstream side of the position of the target, the movable shielding plates being mutually independently movable in x direction; shielding-plate driving devices 22a, 22b which reciprocally drive the movable shielding plates 16 constituting the groups, in the x direction in a mutually independent manner; and a shielding-plate controlling device 24 which, on the basis of measurement information obtained by the monitor 14, controls the shielding-plate driving devices 22a, 22b to relatively increase an amount of blocking the ion beam 4 by the opposed movable shielding plates 16 which correspond to a position where a measured y-direction beam current density is relatively large, thereby uniformity of the beam current density distribution in the y direction.
摘要:
When ion beam 14 is irradiated onto a substrate 2 to conduct processing such as ion injection, plasma 30 emitted from a plasma generating device 20 is supplied to a portion close to the substrate 2 to suppress electric charging on a substrate surface caused by ion beam irradiation. A ratio of IE/IB is kept at a value not lower than 1.8, a ratio of II /IE is kept at a value not lower than 0.07 and not higher than 0.7, wherein IB is an electric current of the ion beam 14 irradiated onto the substrate 2, II is an ion current expressing a quantity of ions in the plasma 30 emitted from the plasma generating device 20, and IE is an electron current expressing a quantity of electrons in the plasma 30.
摘要:
An analyzing electromagnet constituting an ion implanter has a first inner coil, a second inner coil, three first outer coils, three second outer coils, and a yoke. The inner coils are saddle-shaped coils cooperating with each other to generate a main magnetic field which bends an ion beam in the X direction. Each of the outer coils is a saddle-shaped coil which generates a sub-magnetic field correcting the main magnetic field. Each of the coils has a configuration where a notched portion is disposed in a fan-shaped cylindrical stacked coil configured by: winding a laminations of an insulation sheet and a conductor sheet in multiple turn on an outer peripheral face of a laminated insulator; and forming a laminated insulator on an outer peripheral face.
摘要:
The projection distances of connecting portions of a coil are reduced, thereby enabling the size and power consumption of an analyzing electromagnet to be reduced, and therefore the size and power consumption of an ion implanting apparatus are enabled to be reduced.[Means for Resolution] An analyzing electromagnet 200 constituting an ion implanting apparatus has a first inner coil 206, a second inner coil 212, three first outer coils 218, three second outer coils 224, and a yoke 230. The inner coils 206, 212 are saddle-shaped coils cooperating with each other to generate a main magnetic field which bends an ion beam in the X direction. Each of the outer coils 218, 224 is a saddle-shaped coil which generates a sub-magnetic field correcting the main magnetic field. Each of the coils has a configuration where a notched portion is disposed in a fan-shaped cylindrical stacked coil configured by: winding a laminations of an insulation sheet and a conductor sheet in multiple turn on an outer peripheral face of a laminated insulator; and forming a laminated insulator on an outer peripheral face,