摘要:
An embedded megamodule and an embedded CPU enable power-saving through a combination of hardware and software. The CPU configures the power-down controller (PDC) logic within megamodule and can software trigger a low-power state of logic modules during processor IDLE periods. To wake from this power-down state, a system event is asserted to the CPU through the module interrupt controller. Thus the entry into a low-power state is software-driven during periods of inactivity and power restoration is on system activity that demands the attention of the CPU.
摘要:
An integrated multiplier circuit that operates on a variety of data formats including integer fixed point, signed or unsigned, real or complex, 8 bit, 16 bit or 32 bit as well as floating point data that may be single precision real, single precision complex or double precision. The circuit uses a single set of multiplier arrays to perform 16×16, 32×32 and 64×64 multiplies, 32×32 and 64×64 complex multiplies, 32×32 and 64×64 complex multiplies with one operand conjugated.
摘要:
An integrated multiplier circuit that operates on a variety of data formats including integer fixed point, signed or unsigned, real or complex, 8 bit, 16 bit or 32 bit as well as floating point data that may be single precision real, single precision complex or double precision. The circuit uses a single set of multiplier arrays to perform 16×16, 32×32 and 64×64 multiplies, 32×32 and 64×64 complex multiplies, 32×32 and 64×64 complex multiplies with one operand conjugated.
摘要:
Parallel pipelines are used to access a shared memory. The shared memory is accessed via a first pipeline by a processor to access cached data from the shared memory. The shared memory is accessed via a second pipeline by a memory access unit to access the shared memory. A first set of tags is maintained for use by the first pipeline to control access to the cache memory, while a second set of tags is maintained for use by the second pipeline to access the shared memory. Arbitrating for access to the cache memory for a transaction request in the first pipeline and for a transaction request in the second pipeline is performed after each pipeline has checked its respective set of tags.
摘要:
An optimized floating point multiplier rounding circuit that minimizes the increase of the critical timing path of the calculation. The values of the temporary mantissa required to make the rounding decision are calculated simultaneously by the circuit shown in the invention.
摘要:
An optimized floating point multiplier rounding circuit that minimizes the increase of the critical timing path of the calculation. The values of the temporary mantissa required to make the rounding decision are calculated simultaneously by the circuit shown in the invention.
摘要:
A multiplier circuit that operates on a novel complex data format where the real and imaginary parts of the source and result operands are represented by single precision floating point numbers. The invention provides direct support for complex numbers in floating point representation, thus reducing the number of instructions and processor cycles with improved performance.
摘要:
Parallel pipelines are used to access a shared memory. The shared memory is accessed via a first pipeline by a processor to access cached data from the shared memory. The shared memory is accessed via a second pipeline by a memory access unit to access the shared memory. A first set of tags is maintained for use by the first pipeline to control access to the cache memory, while a second set of tags is maintained for use by the second pipeline to access the shared memory. Arbitrating for access to the cache memory for a transaction request in the first pipeline and for a transaction request in the second pipeline is performed after each pipeline has checked its respective set of tags.
摘要:
An embedded megamodule and an embedded CPU enable power-saving through a combination of hardware and software. The CPU configures the power-down controller (PDC) logic within megamodule and can software trigger a low-power state of logic modules during processor IDLE periods. To wake from this power-down state, a system event is asserted to the CPU through the module interrupt controller. Thus the entry into a low-power state is software-driven during periods of inactivity and power restoration is on system activity that demands the attention of the CPU.