Abstract:
A method and apparatus for controlling the ignition in an internal combustion engine with a device for injecting fuel into a combustion chamber of the engine is provided, in which a control signal for the injection process and a control signal for the ignition process are used. The control signal for the injection process is used to start the measurement of a predetermined.
Abstract:
The invention pertains to a fuel injection device operating according to the solid state energy storage principle, whereby a piston element mounted in a pump cylinder of an electromagnetic reciprocating pump, displaces quantities of the fuel to be injected during a virtually resistanceless acceleration phase during which the piston element stores kinetic energy, before the ejection in the pump area. The displacement is stopped suddenly with the means for interrupting the displacement, so that a pressure impulse is generated in the fuel contained in a closed pressure chamber by direct transfer of the stored kinetic energy of the piston element to the fuel in the pressure chamber. The pressure impulse for the ejection of fuel is used by an injection device, whereby the means for interrupting the displacement and producing the pressure impulse are arranged outside the leading liquid-tight contact area between piston element and piston cylinder of the reciprocating pump.
Abstract:
A process for controlling the ignition in an internal combustion engine with a device for injecting fuel into a combustion chamber of the engine is provided, in which a control signal for the injection process and a control signal for the ignition process are used. The control signal for the injection process is used to start the measurement of a predetermined delay for the issue of the ignition control signal, as well as for the speed or load dependent switching to the ignition through the measurement of the crankshaft angle.
Abstract:
A piston for a direct fuel injection engine is described. The piston comprises a cylindrical skirt and a piston face. The cylindrical skirt has an axis. The piston face has a bowl. The bowl has a wall extending about an axis in inclined relation to the cylindrical skirt axis. An engine is also described. The engine comprises an engine block defining an engine cylinder and a piston moveable axially in the engine cylinder. The piston comprises a cylindrical skirt and a dome-shaped piston face, the piston face having therein a bowl. The bowl located with the cylinder axis passing therethrough. The bowl is defined by a cylindrical wall extending about an axis extending in inclined relation to the axis of the cylinder. The bowl includes a bottom wall extending perpendicularly to the bowl axis. The engine also comprises a fuel injector nozzle adapted to direct a spray of fuel toward the bowl for deflection toward a spark plug disposed on the opposite side of the cylinder axis from the fuel injector.
Abstract:
A fuel injector nozzle includes a nozzle body and a poppet disposed in the body for reciprocating movement. The body has an internal bore surrounding the poppet. The internal bore tapers in a constant angle of taper from a front seating region to a fuel reservoir region. The poppet has a corresponding surface which diverges slightly from the bore. The surfaces of the bore and poppet form flow control surfaces which terminate in a sharp-edged orifice at the front face of the nozzle. When the poppet is displaced to an open or flow position, fuel is accelerated to the orifice and atomized into a combustion chamber.
Abstract:
A method of operating a two-stroke, spark-ignited, internal combustion engine in which the ignition is time-based controlled at low or idle speeds and is crank-angle-based controlled at higher speeds.
Abstract:
The invention relates to a method of operating an internal combustion engine and to an internal combustion engine respectively. In accordance with the method of operating an internal combustion engine in accordance with the invention fuel is injected into a combustion chamber so that it is reflected by a piston, as a result of which charge stratification occurs in the combustion chamber. Fresh air is inducted slightly throttled or not throttled at all into the combustion chamber irrespective of the loading condition of the internal combustion engine so that the exhaust gases from the previous working stroke are completely swept from the combustion chamber. The output of the internal combustion engine is generated substantially via the injected amount of fuel. Due to the method in accordance with the invention charge stratification is caused in which burning of the fuel/air mixture is ideal. The internal combustion engine in accordance with the invention thus features smooth running for ideal emission values.
Abstract:
The invention pertains to a fuel injection device operating according to the solidstate energy storage principle, whereby a rotor element carried in a pump housing of an electromagnetically driven reciprocating pump is accelerated almost without resistance, whereby the rotor element stores kinetic energy and impacts on a piston element, so that a pressure impulse is generated in the fuel contained in a closed pressure chamber before the piston element due to the fact that the stored kinetic energy of the rotor element is transferred via the piston element to the fuel in the pressure chamber and whereby the pressure impulse is used for the injection of fuel through a nozzle and whereby the rotor element is carried form-locking on the piston element and the two elements are mutually spring-mounted.
Abstract:
A tensioner for endless transmission elements such as chains or belts, having a pressure compartment that is impinged upon a tensioning pressure to actuate tensioning means acting upon the transmission element, a supply connection that is impinged upon by a supply pressure, and a valve interposed between the pressure compartment and the supply connection and comprising a closing unit that can be transferred to closed position by the tensioning pressure. The valve is designed as a tensioning pressure control valve, and the closing unit is provided with a substantially spring-elastic pretensioning element that counteracts the transfer to the closed position.
Abstract:
A heating system with a combustion chamber into which fuel is fed via a fuel feed unit in the form of an injection device which operates on the energy-storage principle and has a pump and a nozzle device which delivers bursts of fuel in specified quantities. With this fuel burner, it is possible to select both the quantity of fuel injected and the injection frequency independently of any boundary conditions, thereby optimizing levels of harmful pollutants in the exhaust gas and effectively counteracting resonance vibrations in the burner.