摘要:
This invention discloses a light-emitting device comprising a semiconductor stack layer having an active layer of a multiple quantum well (MQW) structure comprising alternate stack layers of quantum well layers and barrier layers, wherein the barrier layers comprise at least one doped barrier layer and one undoped barrier layer. The doped barrier layer can improve the carrier mobility of the electron holes and increase the light-emitting area and the internal quantum efficiency of the active layer.
摘要:
A light-emitting diode device (LED) device and manufacturing methods thereof are provided, wherein the LED device comprises a substrate, a first n-type semiconductor layer, an n-type three-dimensional electron cloud structure, a second n-type semiconductor layer, an active layer and a p-type semiconductor layer. The first n-type semiconductor layer, the n-type three-dimensional electron cloud structure, the second n-type semiconductor layer, the active layer and the p-type semiconductor layer are subsequently grown on the substrate.
摘要:
The present invention is a feed-forward automatic-gain control amplifier (FFAGCA) for biomedical applications and associated method, the FFAGCA comprises a detector, a controller, a variable gain amplifier (VGA), an input and an output. The associated method to process various kinds of biomedical signals with the FFAGCA comprises acts of adjusting gain setting with control path and simultaneously a signal amplification with signal path.
摘要:
This invention discloses a light-emitting device comprising a semiconductor stack layer having an active layer of a multiple quantum well (MQW) structure comprising alternate stack layers of quantum well layers and barrier layers, wherein the barrier layers comprise at least one doped barrier layer and one undoped barrier layer. The doped barrier layer can improve the carrier mobility of the electron holes and increase the light-emitting area and the internal quantum efficiency of the active layer.
摘要:
An exemplary liquid crystal display panel (20) includes a pair of substrates (210, 220) spaced from each other in a vertical direction, a liquid crystal layer (230) sandwiched between the substrates, a plurality of spacers (250) evenly distributed between the substrates to resist compression forces in the vertical direction, and a plurality of pixel regions. Each of the pixel regions defines a reflection region and a transmission region, and each of the spacers includes a reflective layer (252).
摘要:
This disclosure discloses a light-emitting device comprising a substrate; and a plurality of rectifying units, comprising a first rectifying unit and a second rectifying unit, formed on the substrate for receiving and regulating an alternating current signal into a direct current signal. Each of the rectifying units comprises a contact layer and a schottky metal layer. The light-emitting device further comprises a plurality of light-emitting diodes receiving the direct current signal; and a first terminal provided on the substrate and covering the contact layer of the first rectifying unit and the schottky metal layer of the second rectifying unit.
摘要:
A light-emitting diode device (LED) device and manufacturing methods thereof are provided, wherein the LED device comprises a substrate, a first n-type semiconductor layer, an n-type three-dimensional electron cloud structure, a second n-type semiconductor layer, an active layer and a p-type semiconductor layer. The first n-type semiconductor layer, the n-type three-dimensional electron cloud structure, the second n-type semiconductor layer, the active layer and the p-type semiconductor layer are subsequently grown on the substrate.
摘要:
One embodiment provides an offset calibration circuitry configured to compensate an offset voltage of a resistive bridge sensor. The offset calibration circuitry includes a first current digital to analog converter (IDAC) coupled to a first successive approximation register (SAR), a second IDAC coupled to a second SAR and an SAR controller circuitry. The first IDAC is configured to couple to a negative voltage port of a resistive bridge sensor. The first SAR is configured to store a circuitry first digital value. The second IDAC is configured to couple to a positive voltage port of the resistive bridge sensor. The second SAR is configured to store a second digital value. The SAR controller circuitry is configured to adjust each bit of the first SAR and each bit of the second SAR based, at least in part, on an output of a comparator. The comparator is configured to compare a voltage on the negative voltage port or a voltage on the positive voltage port to a common mode voltage.
摘要:
This invention discloses a GaN semiconductor device comprising a substrate; a metal-rich nitride compound thin film on the substrate; a buffer layer formed on the metal-rich nitride compound thin film, and a semiconductor stack layer on the buffer layer wherein the metal-dominated nitride compound thin film covers a partial upper surface of the substrate. Because metal-rich nitride compound is amorphous, the epitaxial growth direction of the buffer layer grows upwards in the beginning and then turns laterally, and the epitaxy defects of the buffer layer also bend with the epitaxial growth direction of the buffer layer. Therefore, the probability of the epitaxial defects extending to the semiconductor stack layer is reduced and the reliability of the GaN semiconductor device is improved.
摘要:
The present invention is a feed-forward automatic-gain control amplifier (FFAGCA) for biomedical applications and associated method, the FFAGCA comprises a detector, a controller, a variable gain amplifier (VGA), an input and an output. The associated method to process various kinds of biomedical signals with the FFAGCA comprises acts of adjusting gain setting with control path and simultaneously a signal amplification with signal path.