摘要:
This invention discloses a light-emitting device comprising a semiconductor stack layer having an active layer of a multiple quantum well (MQW) structure comprising alternate stack layers of quantum well layers and barrier layers, wherein the barrier layers comprise at least one doped barrier layer and one undoped barrier layer. The doped barrier layer can improve the carrier mobility of the electron holes and increase the light-emitting area and the internal quantum efficiency of the active layer.
摘要:
This invention discloses a light-emitting device comprising a semiconductor stack layer having an active layer of a multiple quantum well (MQW) structure comprising alternate stack layers of quantum well layers and barrier layers, wherein the barrier layers comprise at least one doped barrier layer and one undoped barrier layer. The doped barrier layer can improve the carrier mobility of the electron holes and increase the light-emitting area and the internal quantum efficiency of the active layer.
摘要:
The present application relates to an opto-electronic device. The opto-electronic device includes an n-cladding layer, a p-cladding layer and a multi-quantum well structure. The multi-quantum well structure is located between the p-cladding layer and the n-cladding layer, and includes a plurality of barrier layers, a plurality of well layers and a barrier tuning layer. The barrier tuning layer is made by doping the barrier layer adjacent to the p-cladding layer with an impurity therein for changing an energy barrier thereof to improve the light extraction efficiency of the opto-electronic device.
摘要:
A light-emitting diode device (LED) device and manufacturing methods thereof are provided, wherein the LED device comprises a substrate, a first n-type semiconductor layer, an n-type three-dimensional electron cloud structure, a second n-type semiconductor layer, an active layer and a p-type semiconductor layer. The first n-type semiconductor layer, the n-type three-dimensional electron cloud structure, the second n-type semiconductor layer, the active layer and the p-type semiconductor layer are subsequently grown on the substrate.
摘要:
A light-emitting diode device (LED) device and manufacturing methods thereof are provided, wherein the LED device comprises a substrate, a first n-type semiconductor layer, an n-type three-dimensional electron cloud structure, a second n-type semiconductor layer, an active layer and a p-type semiconductor layer. The first n-type semiconductor layer, the n-type three-dimensional electron cloud structure, the second n-type semiconductor layer, the active layer and the p-type semiconductor layer are subsequently grown on the substrate.
摘要:
A light-emitting diode structure is disclosed. A substrate has a first semiconductor layer, a light-emitting layer and a second semiconductor layer formed thereon. The first and second semiconductor layers are of opposite conductivity types. A first contact electrode is disposed between the first semiconductor layer and the substrate, and has a protruding portion extending into the second semiconductor layer. A barrier layer is conformally formed on the first contact electrode and exposes a top surface of the protruding portion. A current blocking member is disposed on the barrier layer and around at least a sidewall of the protruding portion. A second contact electrode is disposed between the first semiconductor layer and the first contact electrode, and in direct contact with the first semiconductor layer, wherein the second contact electrode is electrically insulated from the first contact electrode by the barrier layer.
摘要:
A light emitting diode (LED) is disclosed. The LED includes a substrate, a first semiconductor layer, an active layer, a second semiconductor layer, and a patterned structure. The first semiconductor layer having first and second regions is positioned on the substrate, wherein the first region is thicker than the second region. The active layer is positioned on the first region of the first semiconductor layer. The second semiconductor layer is positioned on the active layer, wherein the first and second semiconductor layers have opposite conductivities. The patterned structure is formed on a sidewall of the first region of the first semiconductor layer or on a sidewall of the second semiconductor layer.
摘要:
FIG. 1 is a perspective view of a supporting frame for tablet computer showing my new design; FIG. 2 is another perspective view thereof; FIG. 3 is another perspective view thereof; FIG. 4 is a front elevational view thereof; FIG. 5 is a rear elevational view thereof; FIG. 6 is a left side view thereof; FIG. 7 is a right side view thereof; FIG. 8 is a top plan view thereof; and, FIG. 9 is a bottom plan view thereof.
摘要:
The present invention relates to a light emitted diode (LED). The LED includes a metal mirror, a bonding substrate, a distributed bragg reflector (DBR), a buffer layer, and a LED epitaxial structure. The bonding substrate is arranged under the metal mirror. The DBR is arranged on the metal mirror. The buffer layer is arranged on the DBR. The LED epitaxial structure is arranged on the buffer layer.
摘要:
A light-emitting diode chip structure including a conductive substrate, a semiconductor stacking layer and a patterned seed crystal layer is provided. The conductive substrate has a surface. The surface has a first region and a second region alternately distributed over the surface. The semiconductor stacking layer is disposed on the conductive substrate, and the surface of the conductive substrate faces the semiconductor stacking layer. The patterned seed crystal layer is disposed on the first region of the surface of the conductive substrate and between the conductive substrate and the semiconductor stacking layer. The patterned seed crystal layer separates the semiconductor stacking layer from the first region. The semiconductor stacking layer covers the patterned seed crystal layer and the second region, and is electrically connected to the conductive substrate through the second region. A fabrication method of the light-emitting diode chip structure is also provided.