Abstract:
The present disclosure describes a system for providing targeted, temperature regulated therapy to a user. The system includes a convective unit and a forced air controller, with the convective unit including a sleeve for securing to a desired portion of the user's anatomy. The convective unit is fluidly coupled to the forced air controller, which is operable to transport a thermally conditioned air stream to an inflatable chamber in the sleeve. The convective unit receives the air stream, inflates, distributes the typically warmed, pressurized air within the inflatable chamber, and emits the air through one or more air permeable surfaces for convective transfer of heat to the body of the wearer enveloped by the sleeve.
Abstract:
Polymeric layers (50) comprising an array of blind openings (56) extending into the first major surface (52, 10111, 11211), but not through the second major surfaces (54, 10112, 11212). The blind openings each have a series of areas through the openings from the first major surface towards the second major surfaces ranging from minimum to maximum areas, where for at least a majority of the blind openings the minimum area is not at the first major surface. At least a portion of the first major surface comprises a first material and extends up to, but not into the second major surface. At least a portion of the second major surface comprises a second, different material. Methods for making the polymeric layers are also disclosed. Polymeric layers are useful, for example, as components in personal care garments such as diapers and feminine hygiene products. They can also be useful for filtering (including liquid filtering) and acoustic applications.
Abstract:
Polymeric layers (50) comprising an array of openings (56) extending between the first and second major surfaces (52, 54), wherein the openings (60) each have a series of areas through the openings from the first and second major surfaces ranging from minimum to maximum areas. There is a total area and a total open area for each of the first and second major surfaces, wherein the total open area for each of the first and second major surfaces is not greater than 50 percent of the total area of the respective major surface. For at least a majority of the openings (56), the minimum area is not at either major surface. Methods for making the polymeric layers are also disclosed. Polymeric layers are useful, for example, as components in personal care garments such as diapers and feminine hygiene products and medical skin applications where breathability is desired. They can also be useful for filtering (including liquid filtering) and acoustic applications.
Abstract:
A filtration medium including a polymeric netting of polymeric ribbons and polymeric strands. Each of the polymeric ribbons and strands has a length and width, with the length being the longest dimension and the width being the shortest dimension. The polymeric ribbons have a height-to-width aspect ratio of at least three to one or five to one a major surface that is intermittently bonded to a polymeric strand, and a height typically greater than the height of the one polymeric strand. A filter including the filtration medium and a method useful for making the polymeric netting are also disclosed
Abstract:
Composite polymeric comprising, in order, first, second, and third polymeric layers. The first layer is compositionally different than the second layer. The third layer is compositionally different than the second layer. The second layer comprises an array of void spaces therein, but not through the first and second major surfaces. The void spaces each have a series of areas through the void spaces ranging from minimum to maximum areas. The minimum area is not adjacent to either the first or third layer. Methods for making the composite polymeric layers are also disclosed. Polymeric layers described herein are useful, for example, as components in personal care garments such as diapers and feminine hygiene products. They can also be useful for filtering (including liquid filtering) and acoustic applications.
Abstract:
A coating composition which imparts antifog, antireflective, easy-cleaning, and/or antistatic properties to substrates coated therewith. The coating compositions utilize nanoparticles functionalized with amine groups and/or protected amine groups, and amine-reactive groups.
Abstract:
A polymeric netting including polymeric ribbons and polymeric strands. Each of the polymeric ribbons and strands has a length and width, with the length being the longest dimension and the width being the shortest dimension. The polymeric ribbons have a height-to-width aspect ratio of at least five to one, a major surface that is intermittently bonded to only one polymeric strand, and a height greater than the height of the one polymeric strand. An extrusion die and method useful for making the polymeric netting are also disclosed.
Abstract:
A coating composition which imparts antifog, antireflective, easy-cleaning, and/or antistatic properties to substrates coated therewith. The coating compositions utilize nanoparticles funtionalized with amine groups and/or protected amine groups, and amine-reactive groups.
Abstract:
Polymeric netting comprising polymeric ribbons and polymeric strands, each of the polymeric ribbons and polymeric strands having a length and a width, wherein the length is the longest dimension and the width is the shortest dimension, wherein a plurality of the polymeric strands are bonded together to form a netting layer, wherein adjacent polymeric strands in the netting layer are bonded intermittently at multiple locations along their respective lengths, wherein the netting layer has first and second opposing major surfaces, wherein the polymeric ribbons have a height-to-width aspect ratio of at least 2:1 and a minor surface defined by their width and length, and wherein the minor surface of a plurality of the polymeric ribbons is bonded to the first major surface of the netting layer. Polymeric netting described herein are useful, for example, in an absorbent article.
Abstract:
A filtration medium including a polymeric netting of polymeric ribbons and polymeric strands. Each of the polymeric ribbons and strands has a length and width, with the length being the longest dimension and the width being the shortest dimension. The polymeric ribbons have a height-to-width aspect ratio of at least three to one or five to one a major surface that is intermittently bonded to a polymeric strand, and a height typically greater than the height of the one polymeric strand. A filter including the filtration medium and a method useful for making the polymeric netting are also disclosed.