Seam removal in high aspect ratio gap-fill

    公开(公告)号:US12142480B2

    公开(公告)日:2024-11-12

    申请号:US17401574

    申请日:2021-08-13

    Abstract: Exemplary methods of semiconductor processing may include providing a silicon-containing precursor to a processing region of a semiconductor processing chamber. A substrate may be disposed within the processing region of the semiconductor processing chamber. The methods may include depositing a silicon-containing material on the substrate. The silicon-containing material may extend within the one or more recessed features along the substrate and a seam or void may be defined by the silicon-containing material within at least one of the one or more recessed features along the substrate. The methods may also include treating the silicon-containing material with a hydrogen-containing gas, such as plasma effluents of the hydrogen-containing gas, which may cause a size of the seam or void to be reduced.

    Methods to reduce material surface roughness

    公开(公告)号:US11939674B2

    公开(公告)日:2024-03-26

    申请号:US18116609

    申请日:2023-03-02

    CPC classification number: C23C16/45536 C23C16/303 C23C16/38 H01J37/32009

    Abstract: Exemplary deposition methods may include delivering a silicon-containing precursor and a boron-containing precursor to a processing region of a semiconductor processing chamber. The methods may include providing a hydrogen-containing precursor with the silicon-containing precursor and the boron-containing precursor. A flow rate ratio of the hydrogen-containing precursor to either of the silicon-containing precursor or the boron-containing precursor is greater than or about 1:1. The methods may include forming a plasma of all precursors within the processing region of a semiconductor processing chamber. The methods may include depositing a silicon-and-boron material on a substrate disposed within the processing region of the semiconductor processing chamber.

    Boron concentration tunability in boron-silicon films

    公开(公告)号:US11961739B2

    公开(公告)日:2024-04-16

    申请号:US17063339

    申请日:2020-10-05

    CPC classification number: H01L21/0337 C23C16/38 H01L21/0332

    Abstract: Embodiments of the present technology include semiconductor processing methods to make boron-and-silicon-containing layers that have a changing atomic ratio of boron-to-silicon. The methods may include flowing a silicon-containing precursor into a substrate processing region of a semiconductor processing chamber, and also flowing a boron-containing precursor and molecular hydrogen (H2) into the substrate processing region of the semiconductor processing chamber. The boron-containing precursor and the H2 may be flowed at a boron-to-hydrogen flow rate ratio. The flow rate of the boron-containing precursor and the H2 may be increased while the boron-to-hydrogen flow rate ratio remains constant during the flow rate increase. The boron-and-silicon-containing layer may be deposited on a substrate, and may be characterized by a continuously increasing ratio of boron-to-silicon from a first surface in contact with the substrate to a second surface of the boron-and-silicon-containing layer furthest from the substrate.

    Methods to reduce material surface roughness

    公开(公告)号:US11618949B2

    公开(公告)日:2023-04-04

    申请号:US17087346

    申请日:2020-11-02

    Abstract: Exemplary deposition methods may include delivering a silicon-containing precursor and a boron-containing precursor to a processing region of a semiconductor processing chamber. The methods may include providing a hydrogen-containing precursor with the silicon-containing precursor and the boron-containing precursor. A flow rate ratio of the hydrogen-containing precursor to either of the silicon-containing precursor or the boron-containing precursor is greater than or about 2:1. The methods may include forming a plasma of all precursors within the processing region of a semiconductor processing chamber. The methods may include depositing a silicon-and-boron material on a substrate disposed within the processing region of the semiconductor processing chamber.

    Controlling concentration profiles for deposited films using machine learning

    公开(公告)号:US11532525B2

    公开(公告)日:2022-12-20

    申请号:US17191026

    申请日:2021-03-03

    Abstract: Methods and systems for controlling concentration profiles of deposited films using machine learning are provided. Data associated with a target concentration profile for a film to be deposited on a surface of a substrate during a deposition process for the substrate is provided as input to a trained machine learning model. One or more outputs of the trained machine learning model are obtained. Process recipe data identifying one or more sets of deposition process settings is determined from the one or more outputs. For each set of deposition process setting, an indication of a level of confidence that a respective set of deposition process settings corresponds to the target concentration profile for the film to be deposited on the substrate is also determined. In response to an identification of the respective set of deposition process settings with a level of confidence that satisfies a level of confidence criterion, one or more operations of the deposition process are performed in accordance with the respective set of deposition process settings.

    METHODS TO REDUCE MATERIAL SURFACE ROUGHNESS

    公开(公告)号:US20210140045A1

    公开(公告)日:2021-05-13

    申请号:US17087346

    申请日:2020-11-02

    Abstract: Exemplary deposition methods may include delivering a silicon-containing precursor and a boron-containing precursor to a processing region of a semiconductor processing chamber. The methods may include providing a hydrogen-containing precursor with the silicon-containing precursor and the boron-containing precursor. A flow rate ratio of the hydrogen-containing precursor to either of the silicon-containing precursor or the boron-containing precursor is greater than or about 2:1. The methods may include forming a plasma of all precursors within the processing region of a semiconductor processing chamber. The methods may include depositing a silicon-and-boron material on a substrate disposed within the processing region of the semiconductor processing chamber.

Patent Agency Ranking