Abstract:
A method for forming a silicon-containing dielectric film on a substrate by atomic layer deposition (ALD) includes: providing two precursors, one precursor containing a halogen in its molecule, another precursor containing a silicon but no halogen in its molecule, adsorbing a first precursor, which is one of the two precursors onto a substrate to deposit a monolayer of the first precursor; adsorbing a second precursor, which is the other of the two precursors onto the monolayer of the first precursor to deposit a monolayer of the second precursor; and exposing the monolayer of the second precursor to radicals of a reactant to cause surface reaction with the radicals to form a compound monolayer of a silicon-containing film.
Abstract:
A method for forming a Ti-containing film on a substrate by plasma-enhanced atomic layer deposition (PEALD) using tetrakis(dimethylamino)titanium (TDMAT) or tetrakis(diethylamino)titanium (TDEAT), includes: introducing TDMAT and/or TDEAT in a pulse to a reaction space where a substrate is placed; continuously introducing a NH3-free reactant gas to the reaction space; applying RF power in a pulse to the reaction space wherein the pulse of TDMAT and/or TDEAT and the pulse of RF power do not overlap; and repeating the above steps to deposit a Ti-containing film on the substrate.
Abstract:
A method for forming a dielectric film in a trench on a substrate by plasma-enhanced atomic layer deposition (PEALD) performs one or more process cycles, each process cycle including: (i) feeding a silicon-containing precursor in a pulse; (ii) supplying a hydrogen-containing reactant gas at a flow rate of more than about 30 sccm but less than about 800 sccm in the absence of nitrogen-containing gas; (iii) supplying a noble gas to the reaction space; and (iv) applying RF power in the presence of the reactant gas and the noble gas and in the absence of any precursor in the reaction space, to form a monolayer constituting a dielectric film on a substrate at a growth rate of less than one atomic layer thickness per cycle.
Abstract:
A film forming apparatus includes a reactor chamber, a first electrode provided in the reactor chamber and receiving electrical power, a second electrode provided in the reactor chamber and facing the first electrode, a gas supply inlet for supplying material gas to a space between the first and second electrodes, and a gas exhaust outlet for discharging the material gas. Insulating material is not exposed to a flow path for the material gas in the reactor chamber.
Abstract:
A method for forming a Ti-containing film on a substrate by plasma-enhanced atomic layer deposition (PEALD) using tetrakis(dimethylamino)titanium (TDMAT) or tetrakis(diethylamino)titanium (TDEAT), includes: introducing TDMAT and/or TDEAT in a pulse to a reaction space where a substrate is placed; continuously introducing a NH3-free reactant gas to the reaction space; applying RF power in a pulse to the reaction space wherein the pulse of TDMAT and/or TDEAT and the pulse of RF power do not overlap; and repeating the above steps to deposit a Ti-containing film on the substrate.
Abstract:
A method for forming a silicon-containing dielectric film on a substrate by atomic layer deposition (ALD) includes: providing two precursors, one precursor containing a halogen in its molecule, another precursor containing a silicon but no halogen in its molecule, adsorbing a first precursor, which is one of the two precursors onto a substrate to deposit a monolayer of the first precursor; adsorbing a second precursor, which is the other of the two precursors onto the monolayer of the first precursor to deposit a monolayer of the second precursor; and exposing the monolayer of the second precursor to radicals of a reactant to cause surface reaction with the radicals to form a compound monolayer of a silicon-containing film.