摘要:
An object is to provide a method for manufacturing a light-emitting device including a flexible substrate, in which separation is performed without separation at the interface between the light-emitting layer and the electrode. A spacer formed of a light absorbing material which absorbs laser light is formed over a partition of one of substrates, a coloring layer is formed over the other substrate, and the substrates are bonded to each other with the use of a bonding layer. The light-emitting layer and the electrode which are formed over the spacer are irradiated with laser light through the coloring layer, so that at least the bonding layer among the light-emitting layer, the electrode, the coloring layer, and the bonding layer is melted to form a fixed portion where the bonding layer and the spacer are bonded by welding.
摘要:
To provide an electroluminescent device in which an element substrate provided with a light-emitting element and a sealing substrate are bonded to each other without causing thermal damage to the light-emitting element and which is formed using an electroluminescent material. A sheet 108 in which layers of at least two different kinds of metals are stacked is formed in a peripheral portion of one or both of the element substrate 102 provided with an EL element 104 and a sealing substrate 106 bonded to the element substrate 102 so as to face each other. Further, the sheet is irradiated with a focused beam, and the irradiation portion of the sheet is heated, whereby at least two kinds of metals are alloyed, and the element substrate and the sealing substrate are bonded to each other by heat generated in the alloying.
摘要:
An object is to provide a method for manufacturing a light-emitting device including a flexible substrate, in which separation is performed without separation at the interface between the light-emitting layer and the electrode. A spacer formed of a light absorbing material which absorbs laser light is formed over a partition of one of substrates, a coloring layer is formed over the other substrate, and the substrates are bonded to each other with the use of a bonding layer. The light-emitting layer and the electrode which are formed over the spacer are irradiated with laser light through the coloring layer, so that at least the bonding layer among the light-emitting layer, the electrode, the coloring layer, and the bonding layer is melted to form a fixed portion where the bonding layer and the spacer are bonded by welding.
摘要:
To provide an electroluminescent device in which an element substrate provided with a light-emitting element and a sealing substrate are bonded to each other without causing thermal damage to the light-emitting element and which is formed using an electroluminescent material. A sheet 108 in which layers of at least two different kinds of metals are stacked is formed in a peripheral portion of one or both of the element substrate 102 provided with an EL element 104 and a sealing substrate 106 bonded to the element substrate 102 so as to face each other. Further, the sheet is irradiated with a focused beam, and the irradiation portion of the sheet is heated, whereby at least two kinds of metals are alloyed, and the element substrate and the sealing substrate are bonded to each other by heat generated in the alloying.
摘要:
An object relates to an electrode of a semiconductor device or a method for manufacturing a semiconductor device, which includes a bonding step, and problems are: (1) high resistance of a semiconductor device due to the use of an Al electrode, (2) formation of an alloy by Al and Si, (3) high resistance of a film formed by a sputtering method, and (4) defective bonding in a bonding step which is caused if a bonding surface has a large unevenness. A semiconductor device includes a metal substrate or a substrate provided with a metal film, a copper (Cu) plating film over and bonded to the metal substrate or the metal film by employing a thermocompression bonding method, a barrier film over the Cu plating film, a single crystal silicon film over the barrier film, and an electrode layer over the single crystal silicon film.
摘要:
A manufacturing method of an SOI substrate which possesses a base substrate having low heat resistance and a very thin semiconductor layer having high planarity is demonstrated. The method includes: implanting hydrogen ions into a semiconductor substrate to form an ion implantation layer; bonding the semiconductor substrate and a base substrate such as a glass substrate, placing a bonding layer therebetween; heating the substrates bonded to each other to separate the semiconductor substrate from the base substrate, leaving a thin semiconductor layer over the base substrate; irradiating the surface of the thin semiconductor layer with laser light to improve the planarity and recover the crystallinity of the thin semiconductor layer; and thinning the thin semiconductor layer. This method allows the formation of an SOI substrate which has a single-crystalline semiconductor layer with a thickness of 100 nm or less over a base substrate.
摘要:
An object is to increase conversion efficiency of a photoelectric conversion device without increase in the manufacturing steps. The photoelectric conversion device includes a first semiconductor layer formed using a single crystal semiconductor having one conductivity type which is formed over a supporting substrate, a buffer layer including a single crystal region and an amorphous region, a second semiconductor layer which includes a single crystal region and an amorphous region and is provided over the buffer layer, and a third semiconductor layer having a conductivity type opposite to the one conductivity type, which is provided over the second semiconductor layer. A proportion of the single crystal region is higher than that of the amorphous region on the first semiconductor layer side in the second semiconductor layer, and the proportion of the amorphous region is higher than that of the single crystal region on the third semiconductor layer side.
摘要:
A damaged region is formed by generation of plasma by excitation of a source gas, and by addition of ion species contained in the plasma from one of surfaces of a single crystal semiconductor substrate; an insulating layer is formed over the other surface of the single crystal semiconductor substrate; a supporting substrate is firmly attached to the single crystal semiconductor substrate so as to face the single crystal semiconductor substrate with the insulating layer interposed therebetween; separation is performed at the damaged region into the supporting substrate to which a single crystal semiconductor layer is attached and part of the single crystal semiconductor substrate by heating of the single crystal semiconductor substrate; dry etching is performed on a surface of the single crystal semiconductor layer attached to the supporting substrate; the single crystal semiconductor layer is recrystallized by irradiation of the single crystal semiconductor layer with a laser beam to melt at least part of the single crystal semiconductor layer.
摘要:
A manufacturing method of an SOI substrate which possesses a base substrate having low heat resistance and a very thin semiconductor layer having high planarity is demonstrated. The method includes: implanting hydrogen ions into a semiconductor substrate to form an ion implantation layer; bonding the semiconductor substrate and a base substrate such as a glass substrate, placing a bonding layer therebetween; heating the substrates bonded to each other to separate the semiconductor substrate from the base substrate, leaving a thin semiconductor layer over the base substrate; irradiating the surface of the thin semiconductor layer with laser light to improve the planarity and recover the crystallinity of the thin semiconductor layer; and thinning the thin semiconductor layer. This method allows the formation of an SOI substrate which has a single-crystalline semiconductor layer with a thickness of 100 nm or less over a base substrate.
摘要:
Forming an insulating film on a surface of the single crystal semiconductor substrate, forming a fragile region in the single crystal semiconductor substrate by irradiating the single crystal semiconductor substrate with an ion beam through the insulating film, forming a bonding layer over the insulating film, bonding a supporting substrate to the single crystal semiconductor substrate by interposing the bonding layer between the supporting substrate and the single crystal semiconductor substrate, dividing the single crystal semiconductor substrate at the fragile region to separate the single crystal semiconductor substrate into a single crystal semiconductor layer attached to the supporting substrate, performing first dry etching treatment on a part of the fragile region remaining on the single crystal semiconductor layer, performing second dry etching treatment on a surface of the single crystal semiconductor layer subjected to the first etching treatment, and irradiating the single crystal semiconductor layer with laser light.