摘要:
Methods of depositing a film selectively onto a first material relative to a second material are described. The substrate is pre-cleaned by heating the substrate to a first temperature, cleaning contaminants from the substrate and activating the first surface to promote formation of a self-assembled monolayer (SAM) on the first material. A SAM is formed on the first material by repeated cycles of SAM molecule exposure, heating and reactivation of the first material. A final exposure to the SAM molecules is performed prior to selectively depositing a film on the second material. Apparatus to perform the selective deposition are also described.
摘要:
A method of operation of a measurement system includes: providing a specimen having a film; controlling a beam generator to direct a charged particle beam into the specimen; detecting a reference signal emitted from the specimen; normalizing the reference signal to create a film L-ratio; and determining a thickness of the film by correlating the film L-ratio to a calibration curve.
摘要:
Methods of improved selectively for SAM-based selective depositions are described. Some of the methods include forming a SAM on a second surface and a carbonized layer on the first surface. The substrate is exposed to an oxygenating agent to remove the carbonized layer from the first surface, and a film is deposited on the first surface over the protected second surface. Some of the methods include overdosing a SAM molecule to form a SAM layer and SAM agglomerates, depositing a film, removing the agglomerates, reforming the SAM layer and redepositing the film.
摘要:
Methods for depositing desired materials formed on certain locations of a substrate with desired materials using a selective deposition process for semiconductor applications are provided. In one embodiment, a method of forming a structure with desired materials on a substrate includes supplying a first gas comprising a hydroxy terminated hydrocarbon containing material to a surface of a substrate, selectively forming a passivation layer on a first material of the substrate, selectively forming self assembled monolayers on a second material of the substrate, and selectively forming a material layer on the passivation layer.
摘要:
Methods of depositing a film selectively onto a first material relative to a second material are described. The substrate is pre-cleaned by heating the substrate to a first temperature, cleaning contaminants from the substrate and activating the first surface to promote formation of a self-assembled monolayer (SAM) on the first material. A SAM is formed on the first material by repeated cycles of SAM molecule exposure, heating and reactivation of the first material. A final exposure to the SAM molecules is performed prior to selectively depositing a film on the second material. Apparatus to perform the selective deposition are also described.
摘要:
Methods of improved selectively for SAM-based selective depositions are described. Some of the methods include forming a SAM on a second surface and a carbonized layer on the first surface. The substrate is exposed to an oxygenating agent to remove the carbonized layer from the first surface, and a film is deposited on the first surface over the protected second surface. Some of the methods include overdosing a SAM molecule to form a SAM layer and SAM agglomerates, depositing a film, removing the agglomerates, reforming the SAM layer and redepositing the film.
摘要:
Methods of improved selectively for SAM-based selective depositions are described. Some of the methods include forming a SAM on a second surface and a carbonized layer on the first surface. The substrate is exposed to an oxygenating agent to remove the carbonized layer from the first surface, and a film is deposited on the first surface over the protected second surface. Some of the methods include overdosing a SAM molecule to form a SAM layer and SAM agglomerates, depositing a film, removing the agglomerates, reforming the SAM layer and redepositing the film.
摘要:
Exemplary processing methods may include providing a silicon-containing precursor and a carbon-containing precursor to a processing region of a semiconductor processing chamber. A substrate may be housed in the processing region. The substrate may define a feature within the substrate. The methods may include forming plasma effluents of the silicon-containing precursor and the carbon-containing precursor. The methods may include depositing a silicon-and-carbon-containing material on the substrate. The methods may include providing a hydrogen-containing precursor to the processing region of the semiconductor processing chamber, forming plasma effluents of the hydrogen-containing precursor, and etching the silicon-and-carbon-containing material from a sidewall of the feature within the substrate. The methods may include providing a nitrogen-containing precursor to the processing region of the semiconductor processing chamber, forming plasma effluents of the nitrogen-containing precursor, and doping the silicon-and-carbon-containing material with nitrogen.
摘要:
Methods and apparatus for removing deposits in self-assembled monolayer (SAM) based selective deposition process schemes using cryogenic gas streams are described. Some methods include removing deposits in self-assembled monolayer (SAM) based selective depositions by exposing the substrate to cryogenic aerosols to remove undesired deposition on SAM protected surfaces. Processing chambers for cryogenic gas assisted selective deposition are also described.
摘要:
Methods of improved selectively for SAM-based selective depositions are described. Some of the methods include forming a SAM on a second surface and a carbonized layer on the first surface. The substrate is exposed to an oxygenating agent to remove the carbonized layer from the first surface, and a film is deposited on the first surface over the protected second surface. Some of the methods include overdosing a SAM molecule to form a SAM layer and SAM agglomerates, depositing a film, removing the agglomerates, reforming the SAM layer and redepositing the film.