Abstract:
A method and apparatus for forming magnetic media substrates is provided. A patterned resist layer is formed on a substrate having a magnetically susceptible layer. A conformal protective layer is formed over the patterned resist layer to prevent degradation of the pattern during subsequent processing. The substrate is subjected to an energy treatment wherein energetic species penetrate portions of the patterned resist and conformal protective layer according to the pattern formed in the patterned resist, impacting the magnetically susceptible layer and modifying a magnetic property thereof. The patterned resist and conformal protective layers are then removed, leaving a magnetic substrate having a pattern of magnetic properties with a topography that is substantially unchanged.
Abstract:
Embodiments described herein provide methods and apparatus for treating a magnetic substrate having an imprinted, oxygen-reactive mask formed thereon by implanting ions into a magnetically active surface of the magnetic substrate through the imprinted oxygen-reactive mask, wherein the ions do not reduce the oxygen reactivity of the mask, and removing the mask by exposing the substrate to an oxygen-containing plasma. The mask may be amorphous carbon, through which carbon-containing ions are implanted into the magnetically active surface. The carbon-containing ions, which may also contain hydrogen, may be formed by activating a mixture of hydrocarbon gas and hydrogen. A ratio of the hydrogen and the hydrocarbon gas may be selected or adjusted to control the ion implantation.
Abstract:
A method and apparatus for measuring a temperature of a substrate located in a semiconductor processing environment is disclosed. The substrate has a top surface and an edge surface, and is positioned in a prescribed location within the semiconductor processing environment. An infrared camera oriented to view one side of the edge surface of the substrate is triggered to obtain an infrared image of the one side of the edge surface of the substrate. The infrared image is processed to obtain a temperature profile of the substrate.
Abstract:
Ion species are supplied to a workpiece comprising a pattern layer over a substrate. A material layer is deposited on the pattern layer using an implantation process of the ion species. In one embodiment, the deposited material layer has an etch selectivity to the pattern layer. In one embodiment, a trench is formed on the pattern layer. The trench comprises a bottom and a sidewall. The material layer is deposited into the trench using the ion implantation process. The material layer is deposited on the bottom of the trench in a direction along the sidewall.
Abstract:
Methods for forming a hydrogen implanted amorphous carbon layer with desired film mechanical strength as well as optical film properties are provided. In one embodiment, a method of a hydrogen implanted amorphous carbon layer includes providing a substrate having a material layer disposed thereon, forming an amorphous carbon layer on the material layer, and ion implanting hydrogen ions from a hydrogen containing gas into the amorphous carbon layer to form a hydrogen implanted amorphous carbon layer.
Abstract:
A method and apparatus for forming magnetic media substrates is provided. A patterned resist layer is formed on a substrate having a magnetically susceptible layer. A conformal protective layer is formed over the patterned resist layer to prevent degradation of the pattern during subsequent processing. The substrate is subjected to an energy treatment wherein energetic species penetrate portions of the patterned resist and conformal protective layer according to the pattern formed in the patterned resist, impacting the magnetically susceptible layer and modifying a magnetic property thereof. The patterned resist and conformal protective layers are then removed, leaving a magnetic substrate having a pattern of magnetic properties with a topography that is substantially unchanged.
Abstract:
Embodiments of the present disclosure generally relate to a methods and apparatuses for cleaning exhaust systems, such as exhaust systems used with process chambers for the formation of epitaxial silicon. The exhaust system includes a remote plasma source for supplying ionized gas through the exhaust system, and one or more temperature sensors positioned downstream of the remote plasma source.
Abstract:
Implementations described herein provide for thermal substrate processing apparatus including two thermal process chambers, each defining a process volume, and a substrate support disposed within each process volume. One or more remote plasma sources may be in fluid communication with the process volumes and the remote plasma sources may be configured to deliver a plasma to the process volumes. Various arrangements of remote plasma sources and chambers are described.
Abstract:
Embodiments of the present invention provide methods for forming fin structure with desired materials using a conversion process for three dimensional (3D) stacking of fin field effect transistor (FinFET) for semiconductor chips. In one embodiment, a method of forming a fin structure on a substrate includes performing an directional plasma process on a fin structure formed from a substrate comprising a first type of atoms, the directional plasma process dopes a second type of atoms on sidewalls of the fin structure, performing a surface modification process to form a surface modified layer on the sidewalls of the fin structure reacting with the first type of atoms, replacing the first type of the atoms with the second type of the atoms in the fin structure during the surface modification process, and forming the fin structure including the second type of the atoms on the substrate.