Abstract:
The present invention is directed to a memory cell that includes a magnetic tunnel junction (MTJ) memory element and a two-terminal selector element coupled in series. The MTJ memory element includes a magnetic free layer structure and a magnetic reference layer structure with an insulating tunnel junction layer interposed therebetween. The magnetic reference layer structure includes one or more magnetic reference layers having a first invariable magnetization direction substantially perpendicular to layer planes thereof. The two-terminal selector element includes a first inert electrode and a second inert electrode with a volatile switching layer interposed therebetween; a first active electrode formed adjacent to the first inert electrode; and a second active electrode formed adjacent to the second inert electrode. The volatile switching layer includes at least one conductor layer interleaved with insulating layers.
Abstract:
The present invention is directed to a memory cell that includes a magnetic tunnel junction (MTJ) memory element, which has a low resistance state and a high resistance state, and a two-terminal selector coupled to the MTJ memory element in series. The MTJ memory element includes a magnetic free layer and a magnetic reference layer with an insulating tunnel junction layer interposed therebetween. The two-terminal selector has an insulative state and a conductive state. The two-terminal selector in the conductive state has substantially lower resistance when switching the MTJ memory element from the low to high resistance state than from the high to low resistance state. The voltages applied to the memory cell to respectively switch the MTJ memory element from the low to high resistance state and from the high to low resistance state may be substantially same.
Abstract:
The present invention is directed to a memory cell that includes a magnetic tunnel junction (MTJ) memory element and a two-terminal selector element coupled in series. The MTJ memory element includes a magnetic free layer structure and a magnetic reference layer structure with an insulating tunnel junction layer interposed therebetween. The magnetic reference layer structure includes one or more magnetic reference layers having a first invariable magnetization direction substantially perpendicular to layer planes thereof. The two-terminal selector element includes a first inert electrode and a second inert electrode with a volatile switching layer interposed therebetween; a first active electrode formed adjacent to the first inert electrode; and a second active electrode formed adjacent to the second inert electrode. The volatile switching layer includes a plurality of metal-rich particles or clusters embedded in a matrix or at least one conductor layer interleaved with insulating layers.
Abstract:
The present invention is directed to a spin transfer torque magnetic random access memory (STTMRAM) element comprising a composite free layer including one or more stacks of a bilayer unit that comprises an insulator layer and a magnetic layer with the magnetic layer having a variable magnetization direction substantially perpendicular to a layer plane thereof; a magnetic pinned layer having a first fixed magnetization direction substantially perpendicular to a layer plane thereof; a tunnel barrier layer formed between the composite free layer and the magnetic pinned layer; and a magnetic fixed layer coupled to the magnetic pinned layer through an anti-ferromagnetic coupling layer. The magnetic fixed layer has a second fixed magnetization direction that is substantially perpendicular to a layer plane thereof and is substantially opposite to the first fixed magnetization direction.
Abstract:
The present invention is directed to a spin transfer torque magnetic random access memory (STTMRAM) element comprising a composite free layer including one or more stacks of a bilayer unit that comprises an insulator layer and a magnetic layer with the magnetic layer having a variable magnetization direction substantially perpendicular to a layer plane thereof; a magnetic pinned layer having a first fixed magnetization direction substantially perpendicular to a layer plane thereof; a tunnel barrier layer formed between the composite free layer and the magnetic pinned layer; and a magnetic fixed layer coupled to the magnetic pinned layer through an anti-ferromagnetic coupling layer. The magnetic fixed layer has a second fixed magnetization direction that is substantially perpendicular to a layer plane thereof and is substantially opposite to the first fixed magnetization direction.
Abstract:
Chip packages are described with soft-magnetic shields that are included inside or attached externally to the package containing a MRAM chip. In one group of embodiments a single shield with vias for bonding wires is affixed to the surface of the MRAM chip having the contact pads. The limitation of shield to chip distance due to bonding wire is eliminated by VIA holes according to the invention which achieves minimal spacing between the shield and chip. A second shield without vias can be positioned on the opposite side of the chip from the first shield. In one group of embodiments a hardened ferro-fluid shield can be the only shield or the structure can include a shield with or without vias. One group of embodiments includes an external shield with vias for solder access to the package contact pads affixed to the outer surface of the package.
Abstract:
Resistive memory cell array fabricated with unit areas able to be scaled down to 4 F2, where F is minimum feature size in a technology node are described. Memory cells in a pair of cells commonly include a pair of buried sources in the bottom of trenches formed in a silicon substrate. The source line is shared with an adjacent cell. A pair of gate electrodes provides a vertical channel on a sidewall of the trench. A buried word line connects the bottom of the gates on the sidewall overlying the source wherein the word line is looped at the end of the array. A drain, which is self-aligned to the gate, is formed by implantation/doping the surface of the silicon before patterning the trenches. A contact is formed on top of the drain and the resistive memory element is fabrication on the contact.
Abstract:
Chip packages are described with soft-magnetic shields that are included inside or attached externally to the package containing a MRAM chip. In one group of embodiments a single shield with vias for bonding wires is affixed to the surface of the MRAM chip having the contact pads. The limitation of shield to chip distance due to bonding wire is eliminated by VIA holes according to the invention which achieves minimal spacing between the shield and chip. A second shield without vias can be positioned on the opposite side of the chip from the first shield. In one group of embodiments a hardened ferro-fluid shield can be the only shield or the structure can include a shield with or without vias. One group of embodiments includes an external shield with vias for solder access to the package contact pads affixed to the outer surface of the package.
Abstract:
Fabrication methods using Ion Beam Etching (IBE) for MRAM cell memory elements are described. In embodiments of the invention the top electrode and MTJ main body are etched with one mask using reactive etching such as RIE or magnetized inductively coupled plasma (MICP) for improved selectivity, then the bottom electrode is etched using IBE as specified in various alternative embodiments which include selection of incident angles, wafer rotational rate profiles and optional passivation layer deposited prior to the IBE. The IBE according to the invention etches the bottom electrode without the need for an additional mask by using the layer stack created by the first etching phase as the mask. This makes the bottom electrode self-aligned to MTJ. The IBE also achieves MTJ sidewall cleaning without the need for an additional step.
Abstract:
Resistive memory cell array fabricated with unit areas able to be scaled down to 4 F2, where F is minimum feature size in a technology node are described. Memory cells in a pair of cells commonly include a pair of buried sources in the bottom of trenches formed in a silicon substrate. The source line is shared with an adjacent cell. A pair of gate electrodes provides a vertical channel on a sidewall of the trench. A buried word line connects the bottom of the gates on the sidewall overlying the source wherein the word line is looped at the end of the array. A drain, which is self-aligned to the gate, is formed by implantation/doping the surface of the silicon before patterning the trenches. A contact is formed on top of the drain and the resistive memory element is fabrication on the contact.