摘要:
This disclosure provides embodiments of photovoltaic devices. The devices include a light-absorbing anode comprised of an electrically conductive material having a plasmonic structure, a diffusion barrier, and a cathode. The light-absorbing anode and the cathode are separated by the diffusion barrier.
摘要:
A nano-confinement platform that may allow improved quantification of the structural order of nanometer-scale systems. Sample-holder ‘chips’ are designed for the GTSAXS experimental geometry. The platform involves fabricated nanostructured sample holders on and in one or more corners of a substrate support where the sample material of interest is positioned at the corner of the substrate support. In an embodiment, the substrate material making up the substrate support beneath the sample-holding area is removed. A scattering x-ray sample platform includes a substrate support arranged in a parallelepiped form, having a substantially flat base and a substantially flat top surface, the top surface being substantially parallel with the base, the parallelepiped having a plurality of corners. At least one corner of the substrate support has a sample holding area formed in the top surface of the substrate support and within a predetermined distance from the corner. The sample holding area includes a regular array of nano-wells formed in the top surface of the substrate support.
摘要:
Technologies are described for methods for producing a pattern of a material on a substrate. The methods may comprise receiving a patterned block copolymer on a substrate. The patterned block copolymer may include a first polymer block domain and a second polymer block domain. The method may comprise exposing the patterned block copolymer to a light effective to oxidize the first polymer block domain in the patterned block copolymer. The method may comprise applying a precursor to the block copolymer. The precursor may infuse into the oxidized first polymer block domain and generate the material. The method may comprise applying a removal agent to the block copolymer. The removal agent may be effective to remove the first polymer block domain and the second polymer block domain from the substrate, and may not be effective to remove the material in the oxidized first polymer block domain.
摘要:
Methods for etching nanostructures in a substrate include depositing a patterned block copolymer on the substrate, the patterned block copolymer including first and second polymer block domains, applying a precursor to the patterned block copolymer to generate an infiltrated block copolymer, the precursor infiltrating into the first polymer block domain and generating a material in the first polymer block domain, applying a removal agent to the infiltrated block copolymer to generate a patterned material, the removal agent removing the first and second polymer block domains from the substrate, and etching the substrate, the patterned material on the substrate masking the substrate to pattern the etching. The etching may be performed under conditions to produce nanostructures in the substrate.
摘要:
Technologies are described for methods and systems effective for etching nanostructures in a substrate. The methods may comprise depositing a patterned block copolymer on the substrate. The patterned block copolymer may include first and second polymer block domains. The methods may comprise applying a precursor to the patterned block copolymer to generate an infiltrated block copolymer. The precursor may infiltrate into the first polymer block domain and generate a material in the first polymer block domain. The methods may comprise applying a removal agent to the infiltrated block copolymer to generate a patterned material. The removal agent may be effective to remove the first and second polymer block domains from the substrate. The methods may comprise etching the substrate. The patterned material on the substrate may mask the substrate to pattern the etching. The etching may be performed under conditions to produce nanostructures in the substrate.
摘要:
Methods for etching nanostructures in a substrate include depositing a patterned block copolymer on the substrate, the patterned block copolymer including first and second polymer block domains, applying a precursor to the patterned block copolymer to generate an infiltrated block copolymer, the precursor infiltrating into the first polymer block domain and generating a material in the first polymer block domain, applying a removal agent to the infiltrated block copolymer to generate a patterned material, the removal agent removing the first and second polymer block domains from the substrate, and etching the substrate, the patterned material on the substrate masking the substrate to pattern the etching. The etching may be performed under conditions to produce nanostructures in the substrate.
摘要:
Technologies are described for methods for producing a pattern of a material on a substrate. The methods may comprise receiving a patterned block copolymer on a substrate. The patterned block copolymer may include a first polymer block domain and a second polymer block domain. The method may comprise exposing the patterned block copolymer to a light effective to oxidize the first polymer block domain in the patterned block copolymer. The method may comprise applying a precursor to the block copolymer. The precursor may infuse into the oxidized first polymer block domain and generate the material. The method may comprise applying a removal agent to the block copolymer. The removal agent may be effective to remove the first polymer block domain and the second polymer block domain from the substrate, and may not be effective to remove the material in the oxidized first polymer block domain.
摘要:
A chemically passivated photoelectrode, having a conductive substrate, a layer of conductive oxide, preferably zinc oxide (ZnO), over the conductive substrate, and an ultrathin layer of a chemically inert semiconductor material coating the conductive oxide layer, is disclosed. The ultrathin layer of chemically inert semiconductor material, which may be less than 5 nm thick, increases the efficiency of water splitting through passivation of surface charge traps and chemical stability in harsh environments, as opposed to being photoactive. A method of manufacture and a solar cell having the photoelectrode are also disclosed.
摘要:
A transfer chamber is disclosed having a first plate with a first surface configured to receive a sample and a second surface containing a groove. The second surface of the first plate surrounds the first surface of the first plate. A second plate has a first surface and a second surface containing a groove. A sealing component is disposed in the groove of the first plate or the second plate. A pivotable link couples the first plate and the second plate. The pivotable link is configured to hold the first plate, the second plate, and the sealing component together to substantially create an air-tight seal between the first surface of the first plate and the second surface of the second plate. The pivotable link is configured to open the seal in response to a pressure differential across the transfer chamber.
摘要:
Technologies are described for methods and systems effective for etching nanostructures in a substrate. The methods may comprise depositing a patterned block copolymer on the substrate. The methods may comprise applying a precursor to the patterned block copolymer to generate an infiltrated block copolymer. The precursor may infiltrate into the first polymer block domain and generate a material. The methods may comprise applying a removal agent effective to remove the polymer block domains to the infiltrated block copolymer to generate a pattern of the material. The methods may comprise etching the substrate. The pattern of the material may mask the substrate to pattern the etching. The etching may be performed under conditions to produce nanostructures in the substrate. The methods may comprise removing the pattern of the material and coating the nanostructures and the surface of the substrate with a hydrophobic coating.