摘要:
Systems and methods of regulating voltage at a memory cell are disclosed. An address for the memory cell is determined. Table lookups based on the address are performed. The table lookups yield voltage compensation parameters that can be used to set voltages on the terminals (e.g., source and drain) of the memory cell.
摘要:
Systems and methods of regulating voltage at a memory cell are disclosed. An address for the memory cell is determined. Table lookups based on the address are performed. The table lookups yield voltage compensation parameters that can be used to set voltages on the terminals (e.g., source and drain) of the memory cell.
摘要:
Systems and methods of regulating voltage at a memory cell are disclosed. An address for the memory cell is determined. Table lookups based on the address are performed. The table lookups yield voltage compensation parameters that can be used to set voltages on the terminals (e.g., source and drain) of the memory cell.
摘要:
Systems and methods of regulating voltage at a memory cell are disclosed. An address for the memory cell is determined. Table lookups based on the address are performed. The table lookups yield voltage compensation parameters that can be used to set voltages on the terminals (e.g., source and drain) of the memory cell.
摘要:
A voltage regulator is provided. The voltage regulator provides an output voltage that is proportional to a digital multi-bit select signal. The voltage regulator includes a coarse voltage regulator and a fine voltage regulator. The coarse voltage regulator provides a coarse output voltage based on an output of a voltage divider selected based on the most significant bits of the select signal. The fine voltage regulator provides the output voltage from the coarse output voltage. The output of the fine voltage regulator is adjusted by adjusting the output of an adjustable current source that is provided to a resistor that is coupled between the output and one of the inputs of the fine voltage regulator.
摘要:
A method and apparatus are provided for versatile high voltage level detection. A semiconductor device (100) is provided which includes a high voltage generating circuit (202) for generating a high voltage supply signal having a high voltage level and a voltage level detector (204) coupled to the output of the high voltage generating circuit (202) and including a current source (402) for generating a current to increase the voltage margin of the voltage level detector (204), the voltage level detector (204) generating a voltage control signal in response to the current and the high voltage level detected.
摘要:
A pipeline ADC (Analog to Digital Converter) unit is provided that has a first and a second multi-stage portion. The first multi-stage portion has a first plurality of converter stages for converting a first analog signal to a first digital signal having a first digital resolution. The second portion has a second plurality of converter stages to convert a second analog signal to a second digital signal having a second digital resolution. The second plurality includes the first plurality. The pipeline ADC unit selectively uses either the first plurality of stages alone, or the second plurality. The pipeline ADC unit may be used in a WLAN (Wireless Local Area Network) communication device.
摘要:
In the present method of measuring the current of a first current source, the current thereof may be combined with either the current of a second current source, or the current of a third current source. Based on a combination of the current of the first current source and either (a) the current of the second current source or (b) the current of the third current source, a digital output is provided. If this digital output is of a first value, the state of combining the current of the first current source with the current of the second current source becomes in effect. If this digital output is of a second value, the state of combining the current of the first current source with the current of the second current source becomes in effect.
摘要:
A method and apparatus are provided for high performance, high voltage memory operations on selected memory cells (200) of a semiconductor memory device (100). A high voltage generator (106) during program or erase operations provides a continuous high voltage level (702) on selected word lines (502) and maintains a continuous high voltage level supply to a bit line decoder (120) which sequentially provides the high voltage level (706) to a first portion of bit lines (504) and discharges (708) those bit lines (504) before providing the high voltage level to a second portion (710). For additional improvements to program operations, the high voltage generator (106) decouples high voltages provided to the word lines (502) and the bit lines (504) by providing a current flow control device (1208) therebetween and provides a boosting voltage at a time (1104) to overcome a voltage level drop (1102) resulting from a capacitor load associated with selected bit lines (504) and/or the bit line decoder (120) precharges (1716) a second portion of the bit lines (504) while providing a high voltage level to a first portion to program (1706) a first portion of memory cells (200). For improvements to read operations, whether dynamic reference cells (2002) are blank is determined by providing non-identically regulated high voltage levels from a first voltage source (2112) to the dynamic reference cells (2002) and from a second voltage source (2104) to static reference cells (2004) and, if the dynamic reference cells (2002) are not blank, reads selected memory cells (200) by providing identically regulated high voltage levels to the selected memory cells (200), the dynamic reference cells (2002) and the static reference cells (2004).
摘要:
A method and apparatus are provided for improved noise reduction from switching on and off drain pumps (202) in a high voltage generator. The drain pumps (202) are divided into groups (204) and activation of the groups (204) of drain pumps (202) is staggered (304, 310). In addition, when drain pumps are switched on and off for power conservation or to maintain a steady state high voltage level, the groups (204) of drain pumps (202) are switched on and off in response to various predetermined high voltage levels (410, 412, 414, 416), with different voltage levels for different groups (204) of drain pumps (202).